Browse > Article

Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon  

Lee, Jong-Jib (School of Chemical Engineering, Kongju National University)
Um, Myeong Heon (School of Chemical Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.23, no.5, 2012 , pp. 450-455 More about this Journal
Abstract
The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.
Keywords
fluorescein; activated carbon; adsorption; adsorption kinetics; adsorption equilibrium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. M. Kim, Dicer Report Topic Review, 9, 1 (2009).
2 V. Fineschi, G. Monasterolo, R. Rosi, and E. Turillazzi, Forensic Sci. Int., 100, 137 (1999).   DOI   ScienceOn
3 S. Budavari, The Merck Index, Merck & Co. Inc., Rahway, 651 (1996).
4 H. Q. Qian, et. al., Appl. Surf. Sci., 256, 2686 (2010).   DOI   ScienceOn
5 C. A. M. Zomerdijk, et. al., Biotechnol. Bioeng., 87, 658 (2004).   DOI   ScienceOn
6 S. Pirillo, et. al., Quim. Nova., 32, 1239 (2009).   DOI   ScienceOn
7 J. J. Lee, J. Kor. Soc. Water Sci. Technol., 18, 37 (2010).
8 I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, J. Hazard. Mater., 154, 337 (2008).   DOI   ScienceOn
9 B. H. Fukukawa, Donghwa Technology, 69 (2003).
10 A. Ozcan and A. S. Ozcan, J. Hazard Mater., B125, 252 (2005).
11 A. Mital, L. Kurup, and V. K. Gupta, J. Hazard Mater., B117, 171 (2005).
12 P. Chingombe, B. Saha, and R. J. Wakeman, J. Colloid Interf. Sci., 302, 408 (2006).   DOI   ScienceOn
13 Q. Shi, J. Zhang, C. Zhang, W. Nie, B. Zhang, and H. Zhang, J. Colloid Interf. Sci., 343, 188 (2010).   DOI   ScienceOn
14 P. Sivakumar and P. N. Palanisamy, Int. J. Chem. Tech. Res., 1, 502 (2009).
15 J. J. Lee, Appl. Chem. Eng., 22, 224 (2011).
16 G. McKay, M. E. Guendi, and M. Nassar, Water Res., 21, 1513 (1987).   DOI   ScienceOn
17 J. Zhang, Q. Shi, C. Zhang, J. Xu, B. Zhai, and B. Zhang, Bioresour. Technol., 99, 8974 (2008).   DOI   ScienceOn
18 H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Chemosphere, 53, 655 (2003).   DOI   ScienceOn
19 M. J. Jaycock and G. D. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Chichester (1981).
20 M. T. Sulak, E. Demirbas, and M. Kobya, Biosour. Technol., 98, 2590 (2007).   DOI   ScienceOn