• Title/Summary/Keyword: Frequency-Tuning

Search Result 693, Processing Time 0.027 seconds

Frequency Control of Hydro Power Plant Based on Automatic Tuning Controller (자동 동조 퍼지 제어기를 이용한 수력발전소 주파수 제어)

  • Lee, Seon-Geun;Lee, Won-Yong;Shin, Dong-Ryul;Kwon, Oh-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.251-253
    • /
    • 1993
  • This paper proposes an automatic tuning fuzzy controller for frequency control of a hydro power plant (HPP). The proposed automatic tuning fuzzy controller consists of fuzzy control part and scaling factor calculation part. Scaling factor tuning is based on the concept of conventional tuning rules for the PI controller. The proposed controller was evaluated by simulation. Good results have been obtained for the 5kW model HHP.

  • PDF

An Efficient Coarse Tuning Scheme for Fast Switching Frequency Synthesizer in PHS Applications (PHS 어플리케이션에서의 빠른 스위칭 주파수 합성기를 위한 효율적인 Coarse Tuning 방법)

  • Park Do-Jin;Jung Sung-Kyu;Kim Jin-Kyung;Pu Young-Gun;Jung Ji-Hoon;Lee Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.10-16
    • /
    • 2006
  • This paper presents a fast switching CMOS frequency synthesizer with a new coarse tuning scheme for PHS applications. The proposed coarse tuning method selects the optimal tuning capacitances of the LC-VCO to optimize the phase noise and the lock-time. The measured lock-time is about $20{\mu}s$ and the phase noise is -121dBc/Hz at 600kHz offset. This chip is fabricated with $0.25{\mu}m$ CMOS technology, and the die area is $0.7mm{\times}2.1mm$. The power consumption is 54mW at 2.7V supply voltage.

Wide-Band Fine-Resolution DCO with an Active Inductor and Three-Step Coarse Tuning Loop

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Moon, Yeon-Kug;Kim, Su-Ki;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper presents a wide-band fine-resolution digitally controlled oscillator (DCO) with an active inductor using an automatic three-step coarse and gain tuning loop. To control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO tuning range is 58% at 2.4 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

A Numerical Study on Acoustic Tuning of Quarter-Wave Resonators in a Model Combustion Chamber (연소실에서 1/4파장 공명기의 주파수 동조에 대한 수치적 연구)

  • Park, Ju-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.281-284
    • /
    • 2009
  • Acoustic tuning frequency of quarter-wave resonators is investigated numerically to suppress combustion instability in a liquid rocket engine. A quarter-wave resonator is adopted, which was designed from the cold acoustic test for optimal damping condition. First, in a model combustion chamber scaled down from a full-scale chamber, reactive flow filed is analyzed numerically and acoustic-pressure responses are examined. Next, thermodynamic properties in the resonators are predicted. Based on the data, frequency tuning method is studied. The optimum tuning length of each resonator is proposed and thereby, sufficient damping is produced.

  • PDF

Resonance Frequency and Quality Factor Tuning in Electrostatic Actuation of Nanoelectromechanical Systems

  • Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1711-1719
    • /
    • 2005
  • In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown that both the resonance frequency and the resonance quality (Q) factor can be manipulated. How much the frequency and quality factor can be tuned by excitation voltage and resistance on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the tuning effects is presented. All results are shown based on the feasible dimension of the nanoresonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency. Such parameter tuning could prove to be a very convenient scheme to actively control the response of NEMS for a variety of applications.

Improvement of Phase Noise Characteristics for Tuning Voltage in Voltage Controlled Oscillator using Coupled Microstrip Lines (결합 마이크로스트립 라인을 이용한 전압제어 발진기의 동조전압에 따른 위상잡음 특성 개선)

  • Ryu, Keun-Kwan;Shin, Dong-Hwan;Yom, In-Bok;Kim, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.513-518
    • /
    • 2010
  • Improvement of phase noise characteristics in a different approach of HEMT VCO (Voltage Controlled Oscillator) with coupled microstrip lines to tune the oscillating frequency is investigated. Two HEMT VCOs of 9.8GHz are manufactured in the same configuration except for the frequency tuning circuit in order to empirically demonstrate the phase noise reduction. Experimental result shows that phase noise reduction can be enhanced 8dBc/Hz at 100KHz offset frequency from carrier by frequency tuning circuit with coupled microstrip lines over the conventional VCO.

Push-Push Voltage Controlled Dielectric Resonator Oscillator Using a Broadside Coupler

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.139-143
    • /
    • 2015
  • A push-push voltage controlled dielectric resonator oscillator (VCDRO) with a modified frequency tuning structure using broadside couplers is investigated. The push-push VCDRO designed at 16 GHz is manufactured using a low temperature co-fired ceramic (LTCC) technology to reduce the circuit size. The frequency tuning structure using a broadside coupler is embedded in a layer of the A6 substrate by using the LTCC process. Experimental results show that the fundamental and third harmonics are suppressed above 15 dBc and 30 dBc, respectively, and the phase noise of push-push VCDRO is -97.5 dBc/Hz at an offset frequency of 100 kHz from the carrier. The proposed frequency tuning structure has a tuning range of 4.46 MHz over a control voltage of 1-11 V. This push-push VCDRO has a miniature size of 15 mm×15 mm. The proposed design and fabrication techniques for a push-push oscillator seem to be applicable in many space and commercial VCDRO products.

A Study on Frequency Tunable Vibration Energy Harvester (주파수 튜닝이 가능한 진동형 에너지 하베스터에 관한 연구)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2014
  • The common vibration energy harvester effectively converts mechanical vibration to electric power at a specific resonance frequency that must match the ambient excitation frequency. The resonance frequencies of energy harvesters are fixed during the design process and could not be changed after fabrication. In this paper, we proposed the new frequency tuning which uses the rotatable spring in order to adjust the spring constants. By this tuning method, the resonance frequency of the system can simply be manipulated using spring rotation. The proposed energy harvester has been successfully tuned to a resonance frequency between 23 and 32 Hz. The experimental results demonstrated that the proposed energy harvester could generate a maximum output power of $60{\mu}W$ with an acceleration of 0.5 g ($1g=9.81m/s^2$), and that the resonance frequency of the harvester was able to tune approximately 31.4%. When the proposed harvester was attached to an automobile engine, the maximum open circuit voltage of 1.78 Vpp was produced at 700 rpm.