• Title/Summary/Keyword: Frequency Shift Key

Search Result 35, Processing Time 0.027 seconds

A new Robust Wavelet Shift Keying System Using Scaling and Wavelet Functions (스케일링 함수와 웨이브릿을 이용한 잡음에 강인한 새로운 웨이브릿 편이 변조 시스템)

  • Jeong, Tae-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2008
  • There are the frequency shift keying(FSK), phase shift keying(PSK) and amplitude shift keying(ASK) in the conventional digital communications method. In this paper, We proposed a new robust wavelet shift keying system using scaling and wavelet function in the digital communication. Wavelet Transform consist of a low frequency and high frequency coefficient. When the input signal is one, if it finds the impulse response, the signal is separated from the scaling and wavelet function. The binary data is encoded by modulator which assigned the scaling function to 1(one), and wavelet to zero(0). It was demonstrated by experiment that the proposed algorithm can be a robust noise.

  • PDF

Wavelet Shift Keying System Using a Binary Matching Filter (2진 정합필터를 이용한 웨이브릿 편이변조 시스템)

  • Oh, Hyoung-Jin;Jeong, Tae-Il;Lee, Tae-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1933-1938
    • /
    • 2008
  • There are the frequency shift keying(FSK), phase shift keying(PSK) and amplitude shift keying(ASK) in the conventional digital communications method. In this parer, We proposed the algorithm for wavelet shift keying system using a binary matching filter in the digital communication. Wavelet shift keying system are used to a scaling function(low frequency) and wavelet(high frequency) coefficients. The binary data is encoded by modulator which assigned the scaling function to 1(one), and wavelet to zero(0). Wavelet shift keying of the conventional method needs to a post-processing for the decoding. In this paper, wavelet shift keying signal is reconstructed by the decoder using a binary matching filter. So, it was able to the decoding without the post-processing. It was demonstrated by the experiment that the proposed algorithm is a validity.

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

RFID Mutual Authentication Protocol Using Nonfixed Symmetric Key Based on Shift Computation and Random Number (시프트 연산과 난수를 이용한 가변적 대칭키 기반의 RFID 상호인증 프로토콜)

  • Lee, Jae-Kang;Oh, Se-Jin;Chung, Kyung-Ho;Lee, Chang-Hee;Ahn, Kwang-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.377-384
    • /
    • 2012
  • RFID system is a technique to obtain information of tag using radio frequency. Specificity of RFID systems using radio frequency has many problems that is eavesdropping, location tracking, spoofing attack, replay attack, denial of service attack. So, RFID protocol should be used cryptographic methods and mutual authentication for security and privacy. In this paper, we explain the problem of past protocol and propose the nonfixed symmetric key-based RFID mutual authentication protocol using shift computation and random number. Proposed protocol is secure from various attacks. Because it use shift operation and non-fixed symmetric key.

Scanning Rayleigh Doppler Lidar for Wind Profiling Based on Non-polarized Beam Splitter Cube Optically Contacted FPI

  • Zheng, Jun;Sun, Dongsong;Chen, Tingdi;Zhao, Ruocan;Han, Yuli;Li, Zimu;Zhou, Anran;Zhang, Nannan
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • A Scanning Rayleigh Doppler lidar for wind profiling based on a non-polarized beam splitter cube optically contacted FPI is developed for wind measurement from high troposphere to low stratosphere in 5-35 km. Non-polarized beam splitter cube optically contacted to the FPI are used for a stable optical receiver. Zero Doppler shift correction is used to correct for laser or FPI frequency jitter and drift and the timing sequence is designed. Stability of the receiver for Doppler shift discrimination is validated by measuring the transmissions of FPI in different days and analyzed the response functions. The maximal relative wind deviation due to the stability of the optical receiver is about 4.1% and the standard deviation of wind velocity is 1.6% due to the stability. Wind measurement comparison experiments were carried out in Jiuquan ($39.741^{\circ}N$, $98.495^{\circ}E$), Gansu province of China in 2015, showing good agreement with radiosonde result data. Continuous wind field observation was performed from October 16th to November 12th and semi-continuous wind field of 19 nights are presented.

Digital Watermark Algorithm Based on Energy Distribution of Subband Tree Structure in Wavelet Domain (웨이블릿 영역에서 부대역간 트리구조의 에너지 분포에 의한 디지털 워터마크 삽입 알고리즘)

  • 서영호;최순영;박진영;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.85-88
    • /
    • 2002
  • In this paper, the proposed watermark algorithm is based on energy distribution of the subband coefficients in the frequency domain and edge of the original image in the spacial domain. Out of these information, the KeyMap which decides the embedded position of watermark is produced. And then the binary watermark is embedded into the wavelet coefficient of LL3 subband using KeyMap and LFSR(Linear Feedback Shift Register).

  • PDF

Shift and Noise Tolerance Encryption System using a Phase-Based Virtual Image (가상위상영상을 이용한 잡음 및 변이에 강한 암호화 시스템)

  • 서동환;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.658-665
    • /
    • 2003
  • In this paper, we propose an improved image encryption and the shift-tolerance method in the Fourier space using a virtual phase image. The encrypted image is obtained by the Fourier transform of the product of a phase-encoded virtual image, not an original image, and a random phase image. Therefore, even if unauthorized users analyze the encrypted image, we can prevent the possibility of counterfeiting from unauthorized people using virtual image which dose not contain any information from the original image. The decryption technique is simply performed by inverse Fourier transform of the interference pattern between the encrypted image and the Fourier decrypting key, made of proposed phase assignment rule, in frequency domain. We demonstrate the robustness to noise, to data loss and shift of the encrypted image or the Fourier decryption key in the proposed technique.

UHF RFID Hand-Held Transceiver System with Multi-protocol and Multi-Standard supplements (Multi-Protocol/Multi-Standard 지원 UHF RFID 휴대용 리더 시스템)

  • Park, Kyong-Tae;Roh, Hyoung-Hwan;Park, Jun-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.147-150
    • /
    • 2007
  • This paper presents an advanced RFID reader system implementing multi-protocols and multi-standards at 900MHz. In accordance with the strict regulations specified by ISO 18000-6 B-Type and EPC Global Gen 2, we have designed corresponding systemic factors which meet the domestic radio frequency utilizing bands of 910-914MHz. In addition, we develop numerous crucial factors of system compatibility options including SSB (Single-Side Band) and DSB (Double-Side Band) specifications, also OOK (On-Off Keying), ASK (Amplitude Shift Keying) and PR-ASK (Phase Reversed-Amplitude Shift Keying) modulation formula. Remarkable technical features of system in this paper can be the direct conversion routines using I/Q Modulation/Demodulation respectively, and Full-Duplex formulation operating at identical frequency bands.

  • PDF

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF