• Title/Summary/Keyword: Frequency Response Function(FRF)

Search Result 146, Processing Time 0.026 seconds

Study for verification of Analysis modeling with investigating dynamic characteristic about 2 axies gimbals system (2축 짐벌 안정계 동특성 고찰을 통한 해석 모델링 검증에 관한 연구)

  • Kim, Man-Dal;Lee, Yong-Deog;Kim, Sung-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.180-183
    • /
    • 2005
  • 2 axis gimbals systems are extensively used in various tracking devices for attaining the system's objective. Designers are sometimes passing over the dynamic characteristics of system in vibrating condition In this paper, 2 axis gimbals systems including interface elements is modeled with finite elements. To verify this model, the finite element model is refined by using the experimental model data. The refined model is simulated with I-DEAS and MSC.NATRAN's FRF(Frequency response Function) and RRA(Random vibration Response Analysis) function to get dynamic characteristics of 2 axis gimbals system.

  • PDF

Derivation of Dynamic Characteristic Values for Multi-degree-of-freedom Frame Structures based on Frequency Response Function(FRF) (주파수응답함수 기반 다자유도 골조 구조물의 동특성치 도출 및 구조모델링 적용 )

  • So-Yeon Kim;Min-Young Kim;Seung-Jae Lee;Kyoung-Kyu Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • In the seismic design of structures, seismic forces are calculated based on structural models and analysis. In order to accurately address the dynamic characteristics of the actual structure in the structural model, calibration based on actual measurements is required. In this study, a 4-story frame test specimen was manufactured to simulate frame building, accelerometers were attached at each floor, and 1-axis shaking table test was performed. The natural period of the specimen was similar to that of the actual 4 story frame building, and the columns were designed to behave with double-curvature having the infinite stiffness of the horizontal members. To investigate the effects seismic waves characteristics, historical and artificial excitations with various frequencies and acceleration magnitudes were applied. The natural frequencies, damping ratios, and mode shapes were obtained using frequency response functions obtained from dynamic response signals, and the mode vector deviations according to the input seismic waves were verified using the Mode assurance criterion (MAC). In addition, the damping ratios obtained from the vibration tests were applied to the structural model, and the method with refined dynamic characteristics was validated by comparing the analysis results with the experimental data.

Finite Element Model Updating and Vibration Analysis of PMDC Motor Rotor System (영구자석형 직류전동기 축계의 유한요소모델 개선과 진동해석)

  • Kim, Y.H.;Ha, J.Y.;Lee, J.G.;Kim, S.H.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • In this paper, finite element modeling was performed for vibration analysis of a rotor system installed in sunroof motor, and analysis process was developed for natural frequency and unbalance response analysis. At the same time, to reduce analysis modeling error caused by the difference between analysis and measured values, finite element model updating was conducted using an optimization algorithm, i.e. hybrid genetic algorithm and simulated annealing (HGASA) method. For this end experimental modal test was carried out and by using the measured frequency response function (FRF), model updating was performed considering both cases where core coil was removed and included. And acceptable result was obtained. Also, dynamic property coefficient of bush bearing which influences vibration response of the rotor system was estimated.

  • PDF

Dynamic Behavior of Rotor in Switched Reluctance Motor Due to Unbalanced Mass (질량 불평형에 의한 SRM 회전자의 동적 거동에 관한 연구)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Taek;Jang, Gi-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.305-312
    • /
    • 2000
  • This study deals with the dynamic response of a rotor in Switched Reluctance Motor(SRM) caused by the unbalance force such as the unbalanced mass and electromagnetic force. The method to analyze the mechanical response of the rotor supported on the bearing is based on an extension of the 3-dimensional Transfer Matrix Method(TMM) coupled with the electromagnetic force calculated by Maxwell stress tensor. The displacement of the rotor as a function of frequency according to the position of the unbalanced mass is evaluated from the frequency response function (FRF). The rotor behaviour with the electromagnetic force is compared with that without the electromagnetic force. In addition, the resonance speeds and the vibration modes are analyzed and demonstrated in this paper. These results are useful in designing the mechanical rotor and in balancing properly the rotor to reduce vibration and noise.

  • PDF

Linear Analysis of Geared System with a Manual Transmission (수동 변속기 내 기어 선형해석을 통한 동역학적 해석)

  • Ahn, Min-Ju;Cho, Sung-Min;Yoon, Jong-Yun;Kim, Jun-Seong;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • Vibro-impacts in manual transmissions result due to several nonlinearities such as multi-staged clutch characteristics and gear backlashes. For the sake of understanding the torsional system, one specific manual transmission with front engine and front wheel drive configuration is investigated with a linear model under the several assumptions substituting the nonlinear factors. First, this system is examined with the mathematical approaches by expressing the governing equations to find out the torsional motions. Second, this system is analyzed using the linear model in order to understand its modal and frequency response characteristics using eigensolution method and the FRF(Frequency Responses Function) analysis. Third, with the given results from the eigensolutions, several mode shapes are investigated related to the torsional motion characteristics. Fourth, the system characteristics with the FRFs are studied with the basic approach, with which the several key parameters will be suggested based upon the results in the further studies.

Analytical Prediction of Chatter Vibration in Milling Process (밀링 가공 시 채터 진동 예측의 해석적 방법)

  • Jeong, Nak-Shin;Yang, Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.210-217
    • /
    • 2009
  • This paper presents the analytical prediction of stability lobes in milling. The stability lobes are obtained by measuring the frequency response function (FRF) of a machining center at the cutting point of the end mill cutter, identifying cutting constants, and approximating cutting force coefficients. The stability lobes are experimentally verified through cutting tests.

Development of Dual Mass Flywheel (이중질량플라이휠의 개발)

  • 지태한;정재훈;송영래
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1067-1072
    • /
    • 2003
  • Generally dual mass flywheel(DMF) is used as a solution to reduce noise and vibration of power train system and to improve the comfortability of passenger car. In this paper, design concept of new DMF model, analytical/numerical model, test procedure and tuning results are presented. Design parameters are studied by some numerical methods and tests. As the result, we can find more efficient model of DMF and reduce vibration level in power train system.

  • PDF

Identification of Structural Characteristic Matrices of Steel Bar by Genetic Algorithm (유전알고리즘에 의한 강봉의 구조특성행렬 산출법)

  • Park, S.C.;Je, H.K.;Yi, G.J.;Park, Y.B.;Park, K.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.946-952
    • /
    • 2010
  • A method for the identification of structural characteristic parameters of a steel bar in the matrices form such as stiffness matrices and mass matrices from frequency response function(FRF) by genetic algorithm is proposed. As the method is based on the finite element method(FEM), the obtained matrices have perfect physical meanings if the FRFs got from the analysis and the FRFs from the experiments were well coincident each other. The identified characteristic matrices from the FRFs with maximun 40 % of random errors by the genetic algorithm are coincident with the characteristic matrices from exact FEM FRFs well each other. The fitted element diameters by using only 2 points experimental FRFs are similar to the actual diameters of the bar. The fitted FRFs are good accordance with the experimental FRFs on the graphs. FRFs of the rest 9 points not used for calculating could be fitted even well.

A Study on the Identification of Vibration Sources of a Gasoline Engine by Multi-Dimensional Spectral Analysis (다차원 스펙트럼 해석 에 의한 가솔린 엔진 의 진동원 검출 에 관한 연구)

  • 강명순;오재응;서상현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.691-698
    • /
    • 1985
  • This paper presents a method for the identification of vibration sources in a multiple input system where the input source may be coherent with each other. Using multi-dimensional spectral analysis, it is found that one of the most significant vibration sources of a gasoline engine is the pressure variation within the cylinder. In this analysis the concepts of residual spectral analysis and the partial coherence function are applied. Finally, the overall levels of the acceleration on the cylinder block obtained by multi-dimensional spectral analysis are compared with those by the frequency response function approach. The experimental results have shown a good agreement with the results calculated by this method the input sources are coherent strongly each other.

Identification of Damping Matrix for a Steel Bar by the Genetic Algorithm (유전알고리즘에 의한 강봉의 감쇠행렬 산출법)

  • Park, Sok-Chu;Park, Young-Bum;Park, Kyoung-Il;Je, Hye-Kwang;Yi, Geum-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.271-277
    • /
    • 2011
  • An identification method of the structural damping matrix for a steel bar by the genetic algorithm is proposed. Supposing the damping matrix were in proportion to the stiffness matrix, the proportional factors can be identified from the curve fitting of the experimental frequency response function(FRF) by the genetic algorithm. Applying the identified damping matrix to FEM of a beam model, the values of the objective function could be reduced to about 1/60 in comparison with conventional FEM model without damping. The damping matrices of some sub-structures which have large damping partly could be identified by the algorithm, and they could be used as some parts of the FEM model for a whole structure.