• Title/Summary/Keyword: Frequency Response Function(FRF)

Search Result 146, Processing Time 0.042 seconds

Substructure Analysis of Steering System using Transfer Function Synthesis Method (전달함수합성법을 이용한 스티어링 시스템의 부분구조 해석)

  • Hong, Sung-Kyu;Kim, Do-Youn;Lee, Doo-Ho;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.201-206
    • /
    • 2000
  • In this work transfer function synthesis method based on FRF data of each substructure is investigated for a complex structure composed of many substructures. Though the transfer function synthesis method has superiority to analyze the characteristics of interfaces among substructures effectively, many problems arise in the computation process, especially matrix inversion process. Due to computational problems, the error between the data obtained by test and the predictions through computations is inevitable. So in this paper, computational aspects in the transfer function synthesis method are examined through a steering system problem of passenger car. For the FBS method, frequency response functions of 3 substructures are measured experimentally. Effects of several parameters such as matrix inversion method, connection conditions between substructures and off-diagonal terms on system response are studied numerically.

  • PDF

Identification of Structural Damages in a Plate Structure: An FRF-Based Method (FRF를 이용한 평판 구조물의 구조손상 규명기법)

  • Kim, Nam-In;Lee, U-Sik;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.204-212
    • /
    • 2001
  • In this study, an FRF-based structural damage identification method (SDIM) is proposed for plate structures. The present SDIM is derived from the partial differential equation of motion of the damaged plate, in with damages we characterized by using a damage distribution function. The appealing features of the present SDIM include the followings. First, the modal data of the damaged structure are not required. Secondly, a sufficient number of information can be generated from the measured FRFs by simply varying excitation frequencies and response measurement points. The feasibility of the present SDIM is verified through some numerically simulated damage identification tests.

  • PDF

Full Vehicle Modal Testing using Single-Run FRF Measurement and Mode Map Validation (Single-Run FRF 측정을 통한 실차 모달 시험 및 모드맵 검증)

  • Lee, Keun-Soo;Jung, Seung-Kyun;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • Finding reasonable flexural modes from the full vehicle modal testing has always been a difficult job to N&V engineers due to FRF inconsistency, nonlinearity, heavy damping and, in many cases, interactions between global body structural modes and massive isolate/non-isolated subsystem modes. This paper provides a brier overview of the mode map validation using single-run FRF measurement with highly sensitive accelerometers fur the full vehicle modal analysis and then it can be used to characterize the vehicle's global/local vibration performances, especially customer perceived "structural feel" typically below 40Hz.

  • PDF

Performance sensitivity analysis of feedback system for adaptive control of a vehicle suspension (자동차 현가장치의 적응제어를 위한 feedback 시스템의 성능감도 해석)

  • Park, H;Jeon, E. S.;Oh, J. E.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 1991
  • A linear quarter model of a vehicle suspension system is built and simulated. Especially the so-called sensitivity analysis is conducted in order to show its applicability to design problems, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. Typical performance measures, namely, sprung mass acceleration, suspension deflection, and tire deflection are examined. The vehicle model is analyzed for ist performance sensitivity as a function of the system's feedback gains. The variable feedback gains are selected as the spring and damping coefficients. Frequency response, RMS response, and performance index of the performance evaluation variables are considered and three-dimensional and contour plots of response surfaces are formed to examine output sensitivity to suspension feedback. Performance trade-offs over the entire frequency spectrum are identified from the FRF, and that between ride quality and handling characteristics are examined from the RMS responses.

  • PDF

Model reduction and compensation of FE model for Hybrid modelling (혼합모델링을 위한 유한요소모델의 자유도 축소와 보상)

  • 이창호;이시복;이인갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.419-425
    • /
    • 1998
  • This paper presents a method of enhancing the accuracy of hybrid modelling that predicts dynamic characteristics of the coupled structure by synthesizing after FE analysis and vibration experimental analysis of the relevant individual substructure. Since most FE models in engineering problems are very large, dynamic analysis with the full FE model is costly. Frequency response function(FRF) synthesis after reducing the FE model can reduce this computational cost but introduce mode truncation error similarly in the case of considering only low-frequency mode after eigensolutions of the complete structure. This paper introduces a FRF of FE model for hybrid FRF synthesis, which is reduced by using IIRS methods and compensated through eigensolutions of the reduced model, and shows the effectiveness of the presented method.

  • PDF

Model Updating Using Sensitivity of Frequency Response Function (주파수 응답함수의 감도를 이용한 모델개선법)

  • Kim, K.K.;Kim, Y.C.;Yang, B.S.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2000
  • It is well known that finite element analysis often has the inaccuracy when they are in conflict with test results. Model updating is concerned with the correction of analytical model by processing records of response from test results. This paper introduce a model updating technique using the frequency response function data. The measurement data is able to be used directly in the FRF sensitivity method because it is not necessary to identify. When a damping model is updated, it is necessary for the sensitivity matrix to be divided Into the complex part and real part. As an applying model, a cantilever and a rotor system are used. Specially the machined clearance($C_p$) of the journal bearing is updated.

  • PDF

Redesign of Steering Wheel Support T-beam Structure to Reduce its Vibration Using Frequency Response Function Synthesis Technique (주파수응답함수 결합법을 이용한 승용차 핸들지지 T 빔의 진동저감 재설계)

  • 변성준;박남규;박윤식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.123-130
    • /
    • 2001
  • The purpose of this paper is to reduce the level of idling vibration on a steering wheel. In some cases, vibration on steering wheel is amplified due to the resonance between the first natural frequency of T-beam and engine idling speed. Using SDM(structural dynamic modification) technique, T-beam is redesigned to reduce its vibration. This paper used FRF(frequency response function) synthesis technique which is entirely dependent on experiment. But this method requires lots of test efforts to enhance its reliability of design. While combining this method with an analytic method. the experimental burden, the major drawback of FRP synthesis method, can be considerably relieved. Using ana1ytic sensitivity analysis, some effective modification regions are preliminarily chosen as candidate Positions where SDM can be applied to modify T-beam\`s dynamic characteristics.

  • PDF

An Enhancement of Multi-Dof Frequency Response Spectrum from Impact Hammer Testing (충격 햄머 실험에서 다자유도 주파수 응답 스펙트럼의 개선)

  • Ahn, Se-Jin;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.363.2-363
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. (omitted)

  • PDF

Noise Characteristics and Frequency Response Function on Implementation of AZ31 Magnesium Alloy to Automobile Hood Panel (AZ31 마그네슘합금의 자동차 Hood Panel적용에 따른 주파수응답 및 소음 특성의 변화)

  • Lee, Choong-Do;Yeo, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • In present study, it aims to compare the noise and vibration characteristics between magnesium alloy and steel hood panel. The AZ31 magnesium hood panel was fabricated through warm forming process, and the noise and vibration characteristics between both hood panels was compared through the measurement of engine radiation noise and transmission loss, as well as FRF on modal analysis. The sound insulation performance of magnesium alloy was wholly superior to that of steel hood panel, even though the transmission loss of magnesium alloy is lower than that of steel due to mass effect primarily. The FRF characteristics on modal analysis indicates that the resonance frequency of magnesium hood panel is remarkably increased to higher value than that of steel hood panel. The radiation and interior noise of magnesium panel even without acoustic hood insulation were remarkably lower than those of steel hood panel with acoustic insulation, in particular, at a range below 4,000 rpm.

A Study on the Vibration Criteria Decision for High Technology Facilities using FRF (주파수 응답함수를 이용한 고정밀 장비의 진동허용규제치 결정기법에 관한 연구)

  • 이홍기;김두훈;김사수
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.363-373
    • /
    • 1996
  • In the case of a precision equipment, it requires a vibration free environment to provide its proper function. Especially, lithography and inspection devices, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved giga class semiconductor wafers. This high technology equipments require very strict environmental vibration standard in promotion to the accuracy of the manufacturing, inspecting devices. The vibration criteria are usually obtained either by the real vibration exciting test on the equipment or by the analytical calculation. The former is accurate but requires a great deal of time and efforts while the latter lacks reliability. This paper proposes a new method to solve this problem at a time. The permissible vibration level to a precision equipment can be easily obtained by analyzing the process of Frequency Response Function(FRF). This paper also demonstrates its effectiveness by applying the proposed method to finding the permissible vibration criteria of a Computer Hard Disk Drive.

  • PDF