• Title/Summary/Keyword: Frequency Hopping (FH)

Search Result 72, Processing Time 0.029 seconds

Analysis of the effect of Digital frequency synthesizer in FSK-Frequency-hopped data communications (FSK-주파수 도약 데이터 통신시스템에서의 디지털 주파수 합성기의 영향분석)

  • 송인근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.879-886
    • /
    • 2003
  • Agile frequency synthesizers are the common device used for commandable, wide-band frequency hopping in frequency-hopped (FH) communications. In this paper, synthesizer phase transient effect and its compensation methods in an FH/FSK(Frequency Hopped Frequency Shift Keying) system are studied. Models for these analysis are developed and resulting performance degradations are computed. The basic PLL is difficult to implement for fast frequency hopping in narrowband radio communication systems. To solve this problem, digital frequency synthesizer/CPM (Continuous Phase Modulation)modulator is proposed. And it's performance is analyzed theoretically. The analysis show that fast frequency hopping is possible in frequency hopping system that use digital frequency synthesizer/CPM modulator.

Hopping Information Generation of Unknown Frequency Hopping Signals in Wireless Channel Environments (무선채널환경에서 미상의 주파수 도약신호에 대한 도약정보 생성 기법)

  • Ahn, Junil;Lee, Chiho;Jeong, Unseob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • A frequency hopping(FH) signal can change its carrier frequency during transmission and has spread-spectrum characteristics in these frequency bands. Therefore, FH signals are widely used in applications that require low-probability-of-intercept(LPI) and anti-jamming (AJ) abilities in wireless communication environments. In this study, the authors propose a method for generating hopping information (HI), which includes start time, dwell time, and hopping frequency for unknown FH signals. The proposed blind HI generation method produces signal detection information based on the spectrum data and then extracts HI using operational procedures for estimating the target FH signal's status, such as appearance, maintenance, and termination. Further, simulation results demonstrate that the proposed method provides accurate HI without detection omissions for various FH signals.

Methods of generating Hopping Patterns Based on Permutation Frequency Hopping SSMA System (치환방법을 이용한 주파수 도약 확산 시스템의 주파수 도약 패턴 발생 방법)

  • Choon Sik YIM;Ryuji KOHNO;Hideki IMAI
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1357-1365
    • /
    • 1991
  • This paper proposes the generation of several classes of frequency hopping patterns. which are derived by permutation, for an asynchronous frequency hopping spread spectrum multiple accecss system (FH/SSMA). The first class of hopping patterns is obtained by using a Latin square. The second class of hopping patterns is derived by generalizing the first class which is designed by using a permutation technique. The third class of hopping patterns is designed by using a rotational base of elements. We evaluate the hit property of the proposed classes of hopping patterns when these patterns are nutually shifted in an FH/SSMA system. Compared to the Reed Slolmon sequences generated by the conventional method, the sequence obtained by the permutation technique can reduce the number of hits among hopping frequencies in asynchronous time/frequency shift.

  • PDF

Improved SDR Frequency Tuning Algorithm for Frequency Hopping Systems

  • Ibrahim, Mostafa;Galal, Islam
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.455-462
    • /
    • 2016
  • Frequency hopping (FH) is a common characteristic of a wide variety of communication systems. On the other hand, software-defined radio (SDR) is an increasingly utilized technology for implementing modern communication systems. The main challenge when trying to realize an SDR FH system is the frequency tuning time, that is, the higher the hopping rate, the lower the required frequency tuning time. In this paper, significant universal hardware driver tuning options (within GNU Radio software) are investigated to discover the tuning option that gives the minimum frequency tuning time. This paper proposes an improved SDR frequency tuning algorithm for the generation of a target signal (with a given target frequency). The proposed algorithm aims to improve the frequency tuning time without any frequency deviation, thus allowing the realization of modern communication systems with higher FH rates. Moreover, it presents the design and implementation of an original GNU Radio Companion block that utilizes the proposed algorithm. The target SDR platform is that of the Universal Software Radio Peripheral USRP-N210 paired with the RFX2400 daughter board. Our results show that the proposed algorithm achieves higher hopping rates of up to 5,000 hops/second.

AJ Performance of the FH-CSS(Frequency Hopped - Chirp Spread Spectrum) Communication Systems (NED를 사용하는 FH-CSS(Frequency Hopped - Chirp Spread Spectrum)의 항 재밍 성능 분석)

  • Kim, Sung-Ho;Kim, Young-Jae;Hwang, Seok-Gu;Jo, Byoung-Gak;Shin, Kwan-Ho;Kim, Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • In the defence wireless communications, conventional Anti-Jamming techniques(Frequency Hopping/Spread Spectrum or Direct Sequence/Spread Spectrum) are used to overcome a intentional interfering signals which are single/multitone or partial band jammer etc. DS/SS techniques is very strong on tone jamming signal but not to be on a partial band jammer. So FH/SS AJ performances are expected method of an substitution of DS/SS, however FH/SS could not have good performance on some BMTJ(Band Multi-tone Jammer). So this paper proposes FH-CSS (Frequency Hopped - Chirp Spread Spectrum) to get more robustness against jammers(BMTJ, PBNJ) and analyze the AJ performances.

Synchronization performance on the Frequency Hopping Radio Communication System (주파수도약 무선통신 시스템의 동기 성능)

  • Bae, Suk-Neung;Han, Sung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.312-317
    • /
    • 2011
  • In this paper, we studied the frequency hopping(FH) performance on the FH radio communication system via M&S of initial synchronization architecture. It is difficult to test the synchronization performance on the real FH communication environment. Thus, we have modeled the synchronization system similar to the real radio communication structure, and simulated the optimum correlation value and the synchronization performance on AWGN channel. As the result, we could obtain the thresholds of correlation synchronization and the FH synchronization performance under the low SNR.

A Study on the Improvement of channel efficiency for FH-SS Tranceiver by applying the Frequency synthesizer with high speed switching time. (고속 주파수 합성기를 이용한 FH-SS 송수신기의 채널 효율 개선 연구)

  • 김재향;김기래
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.197-200
    • /
    • 2001
  • Recently, Switching time is the principal factor in a design of frerquency synthesizer for Spread-Spectrum Communications. fast switching frequency synthesizer is important to improve the channel efficiency in a Frequency Hopping Spread Spectrum (FH-SS) tranceiver. In this paper, we design the frequency synthesizer with fast switching time as fast as 1${\mu}\textrm{s}$. In frequency synthesizer design, we use the interpolated PLL method inserted memory Look-up table of DDS to reduce switching time, and have result of improved channel efficiency about 20% by applying to FH-SS Transceiver.

  • PDF

Frequency Hopping Signal Analysis Using High-Speed Parallel Processing (고속 병렬처리 기법을 활용한 주파수 도약 신호 분석)

  • Lee, Kwang-Yong;Yoon, Hyun-Chul;Lee, Hyeon-Hwi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.251-254
    • /
    • 2014
  • In this paper, we studied a technique of extracting a Frequency Hopping(FH) signal for analysis using high-speed parallel processing structure. Unlike fixed frequency signal, FH signal is difficult to detect and analyze because FH systems use many random frequencies instead of a single carrier frequency. To solve this problem we designed a method that analyze FH signal using high-speed parallel processing. In order to apply parallel processing, we use CUDA using GPU and compare single processing with prarallel processing. As a result, using CUDA on a GPU is about 8.53 times faster than single processing.

Design of MJPEG Encoder for FH/TDD Multiple Transmissions (FH/TDD 다중전송용 MJPEG 부호화기 설계)

  • Kang, Min-Goo;Sonh, Seung-Il
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.45-50
    • /
    • 2011
  • In this paper, the encoding time delay of FH/TDD(Frequency Hopping/Time Division Duplex) based Motion JPEG image compression CODEC is analyzed for radio video transmissions of multi-camera systems in a vehicle. And, Synchronized connection of minimum channel collision is designed with synchronized shift and access according to channel status for Motion JPEG based FH/TDD multiple access.

Online Hop Timing Detection and Frequency Estimation of Multiple FH Signals

  • Sha, Zhi-Chao;Liu, Zhang-Meng;Huang, Zhi-Tao;Zhou, Yi-Yu
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.748-756
    • /
    • 2013
  • This paper addresses the problem of online hop timing detection and frequency estimation of multiple frequency-hopping (FH) signals with antenna arrays. The problem is deemed as a dynamic one, as no information about the hop timing, pattern, or rate is known in advance, and the hop rate may change during the observation time. The technique of particle filtering is introduced to solve this dynamic problem, and real-time frequency and direction of arrival estimates of the FH signals can be obtained directly, while the hop timing is detected online according to the temporal autoregressive moving average process. The problem of network sorting is also addressed in this paper. Numerical examples are carried out to show the performance of the proposed method.