• 제목/요약/키워드: Frenet Frame

검색결과 31건 처리시간 0.014초

GENERALIZED SMARANDACHE CURVES WITH FRENET-TYPE FRAME

  • Zehra Isbilir;Murat Tosun
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.181-197
    • /
    • 2024
  • In this study, we investigate Smarandache curves with Frenet-type frame in Myller configuration for Euclidean 3-space E3. Also, we introduce some characterizations and invariants of them. Then, we construct a numerical example with respect to these special Smarandache curves in order to understand the obtained materials.

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • 충청수학회지
    • /
    • 제34권1호
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

ON CHARACTERIZATIONS OF SPHERICAL CURVES USING FRENET LIKE CURVE FRAME

  • Eren, Kemal;Ayvaci, Kebire Hilal;Senyurt, Suleyman
    • 호남수학학술지
    • /
    • 제44권3호
    • /
    • pp.391-401
    • /
    • 2022
  • In this study, we investigate the explicit characterization of spherical curves using the Flc (Frenet like curve) frame in Euclidean 3-space. Firstly, the axis of curvature and the osculating sphere of a polynomial space curve are calculated using Flc frame invariants. It is then shown that the axis of curvature is on a straight line. The position vector of a spherical curve is expressed with curvatures connected to the Flc frame. Finally, a differential equation is obtained from the third order, which characterizes a spherical curve.

TUBULAR SURFACES WITH MODIFIED ORTHOGONAL FRAME IN EUCLIDEAN 3-SPACE

  • Akyigit, Mahmut;Eren, Kemal;Kosal, Hidayet Huda
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.453-463
    • /
    • 2021
  • In this study, tubular surfaces that play an important role in technological designs in various branches are examined for the case of the base curve is not satisfying the fundamental theorem of the differential geometry. In order to give an alternative perspective to the researches on tubular surfaces, the modified orthogonal frame is used in this study. Firstly, the relationships between the Serret-Frenet frame and the modified orthogonal frame are summarized. Then the definitions of the tubular surfaces, some theorems, and results are given. Moreover, the fundamental forms, the mean curvature, and the Gaussian curvature of the tubular surface are calculated according to the modified orthogonal frame. Finally, the properties of parameter curves of the tubular surface with modified orthogonal frame are expressed and the tubular surface is drawn according to the Frenet frame and the modified orthogonal frame.

A STUDY OF THE TUBULAR SURFACES ACCORDING TO MODIFIED ORTHOGONAL FRAME WITH TORSION

  • Gulnur SAFFAK ATALAY
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.279-290
    • /
    • 2024
  • In this study, tubular surfaces were introduced according to the modified orthogonal frame defined at the points where the torsion is different from zero in the 3-dimensional Euclidean space. First, the relations between the Frenet frame and the modified orthogonal frame with torsion are given. Then, the singularity, Gaussian curvature, mean curvature and basic forms of the tubular surface given according to the modified orthogonal frame with torsion were calculated. In addition, the conditions for the parameter curves of the tubular surface to be geodesic, asymptotic and line of curvature were examined. Finally, tubular surface examples based on both the Frenet frame and the modified orthogonal frame with torsion were given to support the study.

ENERGY ON A PARTICLE IN DYNAMICAL AND ELECTRODYNAMICAL FORCE FIELDS IN LIE GROUPS

  • Korpinar, Talat;Demirkol, Ridvan Cem
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.265-280
    • /
    • 2018
  • In this study, we firstly define equations of motion based on the traditional model Newtonian mechanics in terms of the Frenet frame adapted to the trajectory of the moving particle in Lie groups. Then, we compute energy on the moving particle in resultant force field by using geometrical description of the curvature and torsion of the trajectory belonging to the particle. We also investigate the relation between energy on the moving particle in different force fields and energy on the particle in Frenet vector fields.

THE FLOW-CURVATURE OF CURVES IN A GEOMETRIC SURFACE

  • Mircea Crasmareanu
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1261-1269
    • /
    • 2023
  • For a fixed parametrization of a curve in an orientable two-dimensional Riemannian manifold, we introduce and investigate a new frame and curvature function. Due to the way of defining this new frame as being the time-dependent rotation in the tangent plane of the standard Frenet frame, both these new tools are called flow.

NON-DEVELOPABLE RULED SURFACES WITH TIMELIKE RULING IN MINKOWSKI 3-SPACE

  • YANG, YUN;YU, YANHUA
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1339-1351
    • /
    • 2015
  • In this paper, using pseudo-spherical Frenet frame of pseudo-spherical curves in hyperbolic space, we define the notion of the structure functions on the non-developable ruled surfaces with timelike ruling. Then we obtain the properties of the structure functions and a complete classification of the non-developable ruled surfaces with timelike ruling in Minkowski 3-space by the theories of the structure functions.

SOME SPECIAL SMARANDACHE RULED SURFACES BY FRENET FRAME IN E3-II

  • Suleyman, Senyurt;Davut, Canli;Elif, Can;Sumeyye Gur, Mazlum
    • 호남수학학술지
    • /
    • 제44권4호
    • /
    • pp.594-617
    • /
    • 2022
  • In this study, firstly Smarandache ruled surfaces whose base curves are Smarandache curves derived from Frenet vectors of the curve, and whose direction vectors are unit vectors plotting Smarandache curves, are created. Then, the Gaussian and mean curvatures of the obtained ruled surfaces are calculated separately, and the conditions to be developable or minimal for the surfaces are given. Finally, the examples are given for each surface and the graphs of these surfaces are drawn.