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Mazlum∗

Abstract. In this study, firstly Smarandache ruled surfaces whose base
curves are Smarandache curves derived from Frenet vectors of the curve,

and whose direction vectors are unit vectors plotting Smarandache curves,
are created. Then, the Gaussian and mean curvatures of the obtained

ruled surfaces are calculated separately, and the conditions to be devel-

opable or minimal for the surfaces are given. Finally, the examples are
given for each surface and the graphs of these surfaces are drawn.

1. Introduction

The main resources on the theory of curves and surfaces, which have an
important place in differential geometry, are [4, 6, 7, 8, 10, 11, 15, 16, 25, 26].
The image of a function with two real variables in three-dimensional space
creates a surface. The research on the curvature of a surface have gained
momentum with the calculations developed by Newton and Leibniz in the 17th

century. The surfaces with zero Gaussian curvature at each point are called
the developable surfaces, and the surfaces with zero mean curvature at each
point are called the minimal surfaces. In the theory of surfaces, the surfaces
formed by the movement of a line (direction vector) along a curve (base curve)
are called ruled surfaces. The basic concepts of the ruled surfaces, which have
an important place in this field, are available in many sources, [2, 9, 18, 23].
On the other hand, a unit vector based on the elements of the Frenet frame
can be defined by following:

(1) γ =
aT + bN + cB√
a2 + b2 + c2

,

where a, b, c are some real valued functions. For ∀s ∈ I, the locus of the
endpoints of the vector γ defines a differentiable curve. If γ is taken to be the
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position vector, then the generated curve is called as Smarandache curve, [26].
Some studies of the Smarandache curves are given in [1, 3, 5, 17, 19, 20, 21, 22,
27, 28]. In recent studies on the ruled surfaces, Smarandache ruled surfaces,
whose base curves are Smarandache curves obtained using the Frenet, Darboux
and Alternative frames of any curve, have been defined and some properties
of these surfaces have been investigated, [12, 13, 14, 18, 23, 24]. In this study,
Gaussian and mean curvatures of Smarandache ruled surfaces produced from
Smarandache curves and Frenet vectors are calculated, the conditions of being
developable or minimum of these surfaces are specified, the examples are given
for each surface and the graphs of these surfaces are drawn.

2. Preliminaries

α : I → E3 be a unit speed regular curve. The Frenet frame T,N,B, the
curvatures κ, τ and the Frenet derivative formulae of the curve α are given by
followings:

T = α′, N =
α′′

∥α′′∥
, B = T ∧N,

κ = ∥α′′∥ , τ = ⟨N ′, B⟩ ,
and

T ′ = κN, N ′ = −κT + τB, B′ = −τN.

respectively. The surface formed by a line moving depending on the parameter
of a curve is called a ruled surface and its parametric expression is as follows:

(2) X (s, v) = α(s) + vr (s) .

The normal vector field, the Gaussian and the mean curvatures of X (s, v) are
given by the relations below:

(3) NX =
Xs ∧Xv

∥Xs ∧Xv∥
,

(4) K =
eg − f2

EG− F 2
, H =

Eg − 2fF + eG

2 (EG− F 2)
.

respectively. Here, the coefficients of the first and the second fundamental
forms are defined by follows:

(5) E = ⟨Xs, Xs⟩ , F = ⟨Xs, Xv⟩ , G = ⟨Xv, Xv⟩ ,

(6) e = ⟨Xss, NX⟩ , f = ⟨Xsv, NX⟩ , g = ⟨Xvv, NX⟩ .
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3. Some special Smarandache Ruled Surfaces according to Frenet
Frame in E3 – II

The Smarandache curves obtained for the a, b, c values of the vector γ given
in the expression (1) are defined as follows:

• For a = b = 1, c = 0, the TN– Smarandache curve drawn by vector γ is

γ1 =
T +N√

2
,

• For a = c = 1, b = 0, the TB– Smarandache curve drawn by vector γ is

γ2 =
T +B√

2
,

• For b = c = 1, a = 0, the NB– Smarandache curve drawn by vector γ is

γ3 =
N +B√

2
.

Definition 3.1. The ruled surface generated by continuously moving the
vector TN along the γ1– Smarandache curve is defined as follows:

Π(s, v) =
1√
2
(T +N) +

v√
2
(T +N) .

The first and the second partial differentials of Π (s, v) are

Πs =
1√
2
(1 + v) (−κT + κN + τB) , Πv =

1√
2
(T +N) ,

Πss =
1√
2
(1 + v)

(
−
(
κ′ + κ2

)
T +

(
κ′ − κ2 − τ2

)
N + (τ ′ + κτ)B

)
,

Πsv =
1√
2
(−κT + κN + τB) , Πvv = 0.

And the vectorial product of the vectors Πs , Πv and its norm are

Πs ∧Πv =
(1 + v) (−τT + τN − 2κB)

2
,

∥Πs ∧Πv∥ =
(1 + v)

√
4κ2 + 2τ2

2
.

If we denote the normal vector field of the surface by NΠ, then from the ex-
pression (3), we have
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NΠ =
−τT + τN − 2κB√

4κ2 + 2τ2
.

From the expressions (5) and (6), we compute the coefficients of the first and
the second fundamental forms as

EΠ =
1

2
(1 + v)

2 (
2κ2 + τ2

)
, FΠ = 0, GΠ = 1

and

eΠ =
(1 + v)

(
2 (τκ′ − κτ ′)− τ

(
2κ2 + τ2

))
2
√
2κ2 + τ2

, fΠ = 0, gΠ = 0,

respectively. Finally, by using the expression (4), we get the Gaussian and the
mean curvatures

KΠ = 0, HΠ =
2 (τκ′ − κτ ′)− τ

(
2κ2 + τ2

)
2 (1 + v) (2κ2 + τ2)

√
2κ2 + τ2

,

respectively.

Corollary 3.2. The surface Σ(s, v) is a developable surface.

Definition 3.3. The ruled surface generated by continuously moving the
vector TB along the γ1– Smarandache curve is defined as follows:

Φ (s, v) =
1√
2
(T +N) +

v√
2
(T +B) .

The first and the second partial differentials of Φ (s, v) are

Φs =
1√
2
(−κT + (κ+ v (κ− τ))N + τB) , Φv =

1√
2
(T +B) ,

Φss =
1√
2

 −
(
κ′ + κ2 + vκ2 − vκτ

)
T +

(
κ′ + vκ′ − vτ ′ + κ2 − τ2

)
N

+
(
τ ′ + κτ + vκτ − vτ2

)
B

 ,

Φsv =
1√
2
(κ− τ)N, Φvv = 0.

And the vectorial product of the vectors Φs , Φv and its norm are

Φs ∧ Φv =
1

2
((κ+ vκ− vτ)T + (κ+ τ)N − (κ+ vκ− vτ)B) ,

∥Φs ∧ Φv∥ =
1

2

√
2(κ+ vκ− vτ)

2
+ (κ+ τ)

2
.



598 Süleyman Şenyurt, Davut Canlı, Elif Çan, and Sümeyye Gür Mazlum

Thus, from the expression (3), the normal of the surface NΦ is given as

NΦ =
(κ+ vκ− vτ)T + (κ+ τ)N − (κ+ vκ− vτ)B√

2(κ+ vκ− vτ)
2
+ (κ+ τ)

2
.

By following the expressions (5) and (6), the coefficients of the first and the
second fundamental forms are

EΦ =
1

2

(
κ2 + τ2 + (κ+ vκ− vτ)

2
)
, FΦ =

1

2
( τ − κ) , GΦ = 1

and

eΦ =
τ2
((

κ
τ

)′ − κ− τ
)
− v

(
κ2 (κ+ τ)− 2τ2

(
κ−

(
κ
τ

)′))− v2
(
κ2 − τ2

)
(κ+ τ)

√
2

√
2(κ+ vκ− vτ)

2
+ (κ+ τ)

2
,

fΦ =
κ2 − τ2

√
2

√
2(κ+ vκ− vτ)

2
+ (κ+ τ)

2
, gΦ = 0,

respectively. Finally, from the expression (4), the Gaussian and mean curva-
tures are obtained as

KΦ = −2

( (
κ2 − τ2

)
2(κ+ v (κ− τ))

2
+ (κ+ τ)

2

)2

,

HΦ =


τ2
((κ

τ

)′
− κ− τ

)
+ (κ− τ)

(
κ2 − τ2

)
−v

(
κ2 (κ+ τ)− 2τ2

(
κ−

(κ
τ

)′))
− v2

(
κ2 − τ2

)
(κ+ τ)


2
√
2
(
(κ+ v (κ− τ))

2
+ (κ+ τ)

2
) 3

2

,

respectively.

Corollary 3.4. If κ = τ , the surface Φ(s, v) is a developable surface.

Definition 3.5. The ruled surface generated by continuously moving the
vector NB along the γ1– Smarandache curve is defined as follows:

Σ (s, v) =
1√
2
(T +N) +

v√
2
(N +B) .
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The first and the second partial differentials of Σ (s, v) are

Σs =
1√
2
(−κ (1 + v)T + (κ− vτ)N + τ (1 + v)B) , Σv =

1√
2
(N +B) ,

Σss =
1√
2

 − [(1 + v)κ′ − (κ+ vτ)κ]T −
[
(1 + v)

(
κ2 + τ2

)
− (κ′ − vτ ′)

]
N

+ [(κ− vτ) τ + (1 + v) τ ′]B

 ,

Σsv =
1√
2
(−κT − τN + τB) , Σvv = 0.

And the vectorial product of the vectors Σs , Σv and its norm are

Σs ∧ Σv =
1

2
((κ− τ − 2vτ)T + κ (1 + v)N − κ (1 + v)B) ,

∥Σs ∧ Σv∥ =
1

2

√
(κ− τ − 2vτ)

2
+ 2(1 + v)

2
κ2.

From the expression (3), the normal of the surface NΣ is

NΣ =
(κ− τ − 2vτ)T + κ (1 + v)N − κ (1 + v)B√

(κ− τ − 2vτ)
2
+ 2(1 + v)

2
κ2

.

From the expressions (5) and (6) to compute the coefficients of fundamental
forms, we get

EΣ =
1

2

(
(1 + v)

2 (
κ2 + τ2

)
+ (κ− vτ)

2
)
, FΣ =

1

2
(κ+ τ) , GΣ = 1

and

eΣ =
τ (κ′ − κτ)− v

(
2κ
(
κ2 + τ2

)
− 3τκ′ + κτ ′

)√
(κ− τ − 2vτ)

2
+ 2(1 + v)

2
κ2

,

fΣ =
κ (τ − κ)− 2vτκ√

(κ− τ − 2vτ)
2
+ 2(1 + v)

2
κ2

, gΣ = 0,

respectively. Finally, from the expression (4), we obtain the Gaussian and mean
curvatures as
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KΣ = −4

(
κ (τ − κ)− 2vτκ

(κ− τ − 2vτ)
2
+ 2(1 + v)

2
κ2

)2

,

HΣ =
τκ′ − κ

(
2τ2 − κ2

)
− v

(
2κ
(
κ2 + τ2

)
− 3τκ′ + κτ ′ + 2κτ (κ+ τ)

)
2−1
(
(κ− τ − 2vτ)

2
+ 2(1 + v)

2
κ2
) 3

2

.

Definition 3.6. The ruled surface generated by continuously moving the
vector TNB along the γ1– Smarandache curve is defined as follows:

Υ(s, v) =
1√
2
(T +N) +

v√
3
(T +N +B) .

The first and second partial differentials of Υ (s, v) are

Υs =
1√
6

(
−
(√

3κ+
√
2vκ

)
T +

(√
3κ−

√
2v (κ− τ)

)
N +

(√
3τ +

√
2vτ
)
B
)
,

Υv =
1√
3
(T +N +B) ,

Υss =
1√
6


−
[√

3
(
κ′ + κ2

)
+
√
2v
(
κ′ + κ2 − τκ

)]
T

+
[√

3 (τ ′ + κτ)−
√
2v
(
−τ ′ + κτ − τ2

)]
B

+
[√

3
(
κ′ − κ2 − τ2

)
−

√
2v
(
κ′ − τ ′ + κ2 + τ2

)]
N

 ,

Υsv =
1√
3
(−κT + (κ− τ)N + τB) , Υvv = 0.

And the vectorial product of the vectors Υs , Υv and its norm are

Υs ∧Υv =
1

3
√
2

 (√
3 (κ− τ) +

√
2vκ

)
T +

(√
3 (κ+ τ) +

√
2v (κ− τ)

)
N

−
(
2
√
3κ+

√
2v (2κ− τ)

)
B

 ,

∥Υs ∧Υv∥ =
1

3
√
2


(√

3 (κ− τ) +
√
2vκ

)2
+
(√

3 (κ+ τ) +
√
2v (κ− τ)

)2
+
(√

3 (κ+ τ) +
√
2v (2κ− τ)

)2


1
2

From the expression (3), the normal of the ruled surface Υ (s, v) is
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NΥ =

 (√
3 (κ− τ) +

√
2vκ

)
T +

(√
3 (κ+ τ) +

√
2v (κ− τ)

)
N

−
(
2
√
3κ+

√
2v (2κ− τ)

)
B



(√

3 (κ− τ) +
√
2vκ

)2
+
(√

3 (κ+ τ) +
√
2v (κ− τ)

)2
+
(√

3 (κ+ τ) +
√
2v (2κ− τ)

)2


1
2

From the expressions (5) and (6) to compute the coefficients of fundamental
forms, we get

EΥ =
1

6

(
6κ2 + 3τ2 − 2

√
6v
(
2κ2 − κτ + τ2

)
+ 4v2

(
κ2 − κτ + τ2

))
,

FΥ =
1

6

(√
6τ + 4v (τ − κ)

)
, GΥ = 1

and

eΥ =


−3 (κ+ τ)

(
2κ2 + τ2

)
+ 6 (τκ′ − κτ ′)

−
√
6v
((

κ2 + τ2
)′
+ 4κ3 + 2κτ (2τ − κ) + 3κτ ′

)
−2v2

(
κ′ (κ− τ) + 2

(
κ3 − τ3

)
+ 4τκ (τ − κ)− 3κτ ′

)


6
√(

3κ2 + 3τ2 + 4τκ+ 4
√
6v (2κ2 − τ2) + 4v2 (3κ2 + τ2 − 3κτ)

) ,
fΥ =

2
(√

3
(
2κ2 − τ2 − 3κτ

)
+

√
2v
(
2κ2 + τ2 − 3κτ

))√(
3κ2 + 3τ2 + 4τκ+ 4

√
6v (2κ2 − τ2) + 4v2 (3κ2 + τ2 − 3κτ)

) ,
gΥ = 0,

respectively. Finally, from the expression (4), we compute the Gaussian and
mean curvatures as

KΥ = −
(√

3
(
2κ2 − τ2 − 3κτ

)
+

√
2v
(
2κ2 + τ2 − 3κτ

))2(
3κ2 + 3τ2 + 4τκ+ 4

√
6v (2κ2 − τ2) + 4v2 (3κ2 + τ2 − 3κτ)

)2 ,
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HΥ =



−3 (κ+ τ)
(
2κ2 + τ2

)
+ 6 (τκ′ − κτ ′)

−
√
6v
((

κ2 + τ2
)′
+ 4κ3 + 2κτ (2τ − κ) + 3κτ ′

)
−2v2

(
κ′ (κ− τ) + 2

(
κ3 − τ3

)
+ 4τκ (τ − κ)− 3κτ ′

)
−8
(√

3
(
2κ2 − τ2 − 3κτ

)
+

√
2v
(
2κ2 + τ2 − 3κτ

)) (√
6τ + 4v (τ − κ)

)


3

2

(
3κ2 + 3τ2 + 4τκ+ 4

√
6v
(
2κ2 − τ2

)
+ 4v2

(
3κ2 + τ2 − 3κτ

)) 3
2

.

Definition 3.7. The ruled surface generated by continuously moving the
vector TN along the γ2– Smarandache curve is defined as follows:

Ψ(s, v) =
1√
2
(T +B) +

v√
2
(T +N) .

The first and second partial differentials of Ψ (s, v) are

Ψs =
1√
2
(−κvT + (κ (1 + v)− τ)N + vτB) , Ψv =

1√
2
(T +N) ,

Ψss =
1√
2

 [
κτ − κ2 − v

(
κ′ + κ2

)]
T +

[
κ′ − τ ′ − v

(
κ2 + τ2 − κ′)]N

+
[
κτ − τ2 + v (τ ′ + τκ)

]
B

 ,

Ψsv =
1√
2
(−κT + κN + τB) , Ψvv = 0.

And the vectorial product of the vectors Ψs , Ψv and its norm are

Ψs ∧Ψv =
1

2
(−vτT + vτN + (τ − κ− 2vκ)B) ,

∥Ψs ∧Ψv∥ =
1

2

√
2v2τ2 + (τ − κ− 2vκ)

2
.

From the expression (3), we compute the normal of the surface denoted by NΨ

as

NΨ =
−vτT + vτN + (τ − κ− 2vκ)B√

2v2τ2 + (τ − κ− 2vκ)
2

.

By the expressions (5) and (6), the coefficients of fundamental forms are given
as

EΨ =
1

2

(
v2
(
κ2 + τ2

)
+ (κ+ vκ− τ)

2
)
, FΨ =

1

2
(κ− τ) , GΨ = 1
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and

eΨ =

 τ(τ − κ)
2
+ v

(
4κ2τ + 2κτ2 + τκ′ − κτ ′

)
+v2

(
2τκ′ − τ3 − 2κτ ′ − 2κ2τ

)


√
2

√
2v2τ2 + (τ − 2κ− vκ)

2
,

fΨ =
τ (τ − κ)

√
2

√
2v2τ2 + (τ − κ− 2vκ)

2
, gΨ = 0,

respectively. Finally, from the expression (4), we compute the Gaussian and
mean curvatures as below:

KΨ = −2

(
τ (τ − κ)

2v2τ2 + (τ − κ− 2vκ)
2

)2

,

HΨ =


τ(τ − κ)

2
(
(τ − κ)

2 − 1
)
+ v

(
τκ′ − κτ ′ + 2κτ

(
2κ+ τ + (τ − κ)

3
))

+v2
(
2τκ′ − 2κτ ′ − τ

(
τ2 + 2κ2

) (
1 + (τ − κ)

2
))


(√

2
)−1
(
2v2τ2 + (τ − κ− 2vκ)

2
) 3

2

.

Corollary 3.8. If τ = 0 or κ = τ , the ruled surface Ψ(s, v) is developable.

Definition 3.9. The ruled surface generated by continuously moving the
vector TB along the γ2– Smarandache curve is defined as follows:

P (s, v) =
1√
2
(T +B) +

v√
2
(T +B) .

The first and the second partial differentials of P (s, v) are

Ps =
(1 + v)√

2
(κ− τ)N, Pv =

1√
2
(T +B) ,

Pss =
(1 + v)√

2

((
−κ2 + κτ

)
T + (κ′ − τ ′)N +

(
κτ − τ2

)
B
)
,

Psv =
(κ− τ)√

2
N, Pvv = 0.

And the vectorial product of the vectors Ps , Pv and its norm are
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Ps ∧ Pv =
1

2
(1 + v) (κ− τ) (T −B) ,

∥Ps ∧ Pv∥ =
1√
2
(1 + v) (κ− τ) .

If we denote the normal vector of the surface by NP, then from the expression
(3), we get

NP =
1√
2
(T −B) .

By using the expressions (5) and (6), the coefficients of the first and the second
fundamental forms are given as in the followings:

EP =
1

2
(1 + v)

2
(κ− τ)

2
, FP = 0, GP = 1

and

eP =
1√
2
(1 + v)

(
τ2 − κ2

)
, fP = 0, gP = 0,

respectively. Finally, from the expression (4), the Gaussian and mean curva-
tures are obtained as:

KP = 0, HP =
τ + κ√

2 (1 + v) (τ − κ)
, τ ̸= κ.

Corollary 3.10. The ruled surface P (s, v) is always developable, also if
κ+ τ = 0, the surface is minimal.

Definition 3.11. The ruled surface generated by continuously moving the
vector NB along the γ2– Smarandache curve is defined as follows:

Z (s, v) =
1√
2
(T +B) +

v√
2
(N +B) .

The first and the second partial differentials of Z (s, v) are

Zs =
1√
2
(−κvT + (κ− τ − vτ)N + vτB) , Zv =

1√
2
(N +B) ,

Zss =
1√
2

 [
κτ − κ2 + v (τκ− κ′)

]
T +

[
κ′ − τ ′ + v

(
κ2 + τ2 + τ ′

)]
N

+
[
κτ − τ2 + v

(
τ ′ − τ2

)]
B

 ,

Zsv =
1√
2
(−κT − τN + τB) , Zvv = 0.

And the vectorial product of the vectors Zs , Zv and its norm are
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Zs ∧ Zv =
1

2
((κ− τ − 2vτ)T + vκN − vκB) ,

∥Zs ∧ Zv∥ =
1

2

√
2v2κ2 + (κ− τ − 2vτ)

2
.

By using the expression (3), the normal vector field denoted by NZ can be
computed as:

NZ =
(κ− τ − 2vτ)T + vκN − vκB√

2v2κ2 + (κ− τ − 2vτ)
2

.

From the expressions (5) and (6), the coefficients of fundamental forms can be
given as:

EZ =
1

2

(
v2
(
κ2 + 2τ2

)
+ v2

(
τ2 − τκ

)
+ (κ− τ)

2
)
,

FZ =
1

2
(κ− τ) , GZ = 1

and

eZ =
2κ2τ − κ

(
κ2 + τ2

)
+ v (2κτ (κ− τ) + τκ′ − τ ′κ) + v2

(
κ2 + 2τκ′)

√
2

√
2v2κ2 + (κ− τ − 2vτ)

2
,

fZ =
(τ − κ)κ

√
2

√
2v2κ2 + (κ− τ − 2vτ)

2
, gZ = 0,

respectively. Finally, from the expression (4), the Gaussian and mean curva-
tures are obtained as follows:

KZ = −2

(
(τ − κ)κ

2v2κ2 + (κ− τ − 2vτ)
2

)2

,

HZ =
v (2κτ (κ− τ) + τκ′ − τ ′κ) + v2

(
κ2 + 2τκ′)

2−1
(
2v2κ2 + (κ− τ − 2vτ)

2
) 3

2

.

Corollary 3.12. If κ = τ , the ruled surface Z (s, v) is developable.

Definition 3.13. The ruled surface generated by continuously moving the
vector TNB along the γ2– Smarandache curve is defined as follows:

F (s, v) =
1√
2
(T +B) +

v√
3
(T +N +B) .
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The first and second partial differentials of F (s, v) are

Fs =
1√
6

(
−
√
2κvT + (κ− τ)

(√
3 + v

√
2
)
N +

√
2vτB

)
,

Fv =
1√
3
(T +N +B) ,

Fss =
1√
6


−
[√

3κ (κ− τ) +
√
2v
(
κ2 − κτ + κ′)]T

+
[√

3 (κ′ − τ ′) +
√
2v
(
κ′ − τ ′ − κ2 − τ2

)]
N

+
[√

3τ (κ− τ) +
√
2v
(
κτ − τ2 + τ ′

)]
B

 ,

Fsv =
1√
3
(−κT + (κ− τ)N + τB) , Fvv = 0.

And the vectorial product of the vectors Fs , Fv and its norm are

Fs ∧ Fv =
1

3
√
2

 [√
3 (κ− τ) +

√
2v (κ− 2τ)

]
T +

√
2v (κ+ τ)N

−
[√

3 (κ− τ) +
√
2v (2κ− τ)

]
B

 ,

∥Fs ∧ Fv∥ =
1

3
√
2

√
6(κ− τ)

2
+ v6

√
6(κ− τ)

2
+ 12v2 (κ2 + τ2 − κτ).

By using the expression (3), the normal vector field denoted by NF can be
computed as:

NF =

 (√
3 (κ− τ) +

√
2v (κ− 2τ)

)
T +

√
2v (κ+ τ)N

−
(√

3 (κ− τ) +
√
2v (2κ− τ)

)
B


√
6(κ− τ)

2
+ v6

√
6(κ− τ)

2
+ 12v2 (κ2 + τ2 − κτ)

.

The coefficients of first and second fundamental form are calculated by using
the expressions (5) and (6) as:

EF =
1

6

(
3(κ− τ)

2
+ v2

√
6(κ− τ)

2
+ 4v2

(
κ2 + τ2 − κτ

))
,

FF =
1√
6
(κ− τ) , GF = 1

and



Some special Smarandache ruled surfaces 607

eF =

 −6κ(κ− τ)
2
+ 2

√
6v
(
κ (κ′ − τ ′)− τ

(
(κ− τ)

2
))

+2v2
(
−κ
(
2κ2 + τ2

)
− τ (κ′ + 2τ ′)− 3κτ ′

)


√
6

√
6(κ− τ)

2
+ v6

√
6(κ− τ)

2
+ 12v2 (κ2 + τ2 − κτ)

,

fF =

(
κ2 − τ2

)
√
6

√
6(κ− τ)

2
+ v6

√
6(κ− τ)

2
+ 12v2 (κ2 + τ2 − κτ)

, gF = 0,

respectively. Finally, from the expression (4), we have the Gaussian and mean
curvatures as in the following:

KF = −
(
κ2 − τ2

)2
12
(
(κ− τ)

2
+ v

√
6(κ− τ)

2
+ 2v2 (κ2 + τ2 − κτ)

)2 ,

HF =

 3
(
κ2 − τ2

)
(κ− τ) + v2

√
6κ
(
κ′ − τ ′ − (τ − κ)

2
)

+2v2
(
−4κ2 (κ− τ)− (3κ+ 2τ) (τ + τ ′)− τκ′)


2
(
(κ− τ)

2
+ v

√
6(κ− τ)

2
+ 2v2 (κ2 + τ2 − κτ)

) 3
2

.

Corollary 3.14. If κ = τ , the ruled surface F (s, v) is developable.

Definition 3.15. The ruled surface generated by continuously moving the
vector TN along the γ3– Smarandache curve is defined as follows:

R(s, v) =
1√
2
(N +B) +

v√
2
(T +N) .

The first and second partial differentials of R (s, v) are

Rs =
1√
2
(− (κ+ vκ)T + (−τ + vκ)N + (τ + vτ)B) , Rv =

1√
2
(T +N) ,

Rss =
1√
2

 [
−κ′ + κτ − v

(
κ′ + κ2

)]
T −

[(
κ2 + τ2 + τ ′

)
+ v

(
κ2 + τ2 − κ′)]N

+
[
τ ′ − τ2 + v (τ ′ + τκ)

]
B

 ,

Rsv =
1√
2
(−κT + κN + τB) , Rvv = 0.

And the vectorial product of the vectors Rs , Rv and its norm are
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Rs ∧ Rv =
1

2
(− (τ + vτ)T + (τ + vτ)N + (κ− τ + 2vκ)B) ,

∥Rs ∧ Rv∥ =
1

2

√
2τ2(1 + v)

2
+ (κ− τ + 2vκ)

2
.

From the expression (3), the normal of this surface shown by NR is given

NR =
− (τ + vτ)T + (τ + vτ)N + (κ− τ + 2vκ)B√

2τ2(1 + v)
2
+ (κ− τ + 2vκ)

2
.

Next, from the expressions (5) and (6), the coefficients of the first and the
second fundamental forms can be calculated as shown below:

ER =
1

2

(
κ2 + 2τ2 + 2v

(
κ2 − κτ + τ2

)
+ v2

(
2κ2 + τ2

))
,

FR = −1

2
(κ+ τ) , GR = 1

and

eR =

 −κτ (2τ + κ)− τ(2τ + κ)
′
+ κτ ′ + v

(
−2τ3 − κτ2 − 2ττ ′ + 2κτ ′

)
+v2

(
−τ3 + 2κ2τ + 2κ′τ + 2κτ ′

)


√
2

√
2τ2(1 + v)

2
+ (κ− τ + 2vκ)

2
,

fR =
3κτ − τ2 + 2v

(
κ2 + κτ

)
√
2

√
2τ2(1 + v)

2
+ (κ− τ + 2vκ)

2
, gR = 0,

respectively. Finally, from the expression (4), we have the Gaussian and mean
curvatures as

KR = −2

(
3κτ − τ2 + 2v

(
κ2 + κτ

)
2τ2(1 + v)

2
+ (κ− τ + 2vκ)

2

)2

,

HR =

 τ
(
2κ2 − τ2 − (2τ + κ)

′)
+ κτ ′ + v

(
2κ3 − 2τ3 − 3κτ2 +

(
κ2 − τ2

)′)
+v2

(
2τ
(
κ2 − τ2

)
+ 2(κτ)

′)


2−1
√
2
(
2τ2(1 + v)

2
+ (κ− τ + 2vκ)

2
) 3

2

.
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Definition 3.16. The ruled surface generated by continuously moving the
vector TB along the γ3– Smarandache curve is defined as follows:

Ω (s, v) =
1√
2
(N +B) +

v√
2
(T +B) .

The first and second partial differentials of Ω (s, v) are

Ωs =
1√
2
(−κT − τN + τB) +

v√
2
(κ− τ)N, Ωv =

1√
2
(T +B) ,

Ωss =
1√
2

 [
−κ′ − κτ − v

(
κ2 − τκ

)]
T −

[(
κ2 + τ2 + τ ′

)
− v (κ′ − τ ′)

]
N

+
[
τ ′ − τ2 + v

(
κτ − τ2

)]
B

 ,

Ωsv =
1√
2
(κ− τ)N, Ωvv = 0.

And the vectorial product of the vectors Ωs , Ωv and its norm are

Ωs ∧ Ωv =
1

2
(−τT + (κ+ τ)N + τB) ,

∥Ωs ∧ Ωv∥ =
1

2

√
2τ2 + (κ+ τ)

2
.

From the expression (3), the normal of this surface shown by NΩ is given

NΩ =
−τT + (κ+ τ)N + τB√

2τ2 + (κ+ τ)
2

.

Next, from the expressions (5) and (6), the coefficients of the first and the
second fundamental forms can be calculated as shown below:

EΩ =
1

2

(
κ2 + 2τ2 + v2(κ− τ)

2
)
, FΩ =

1

2
(τ − κ) , GΩ = 1

and

eΩ =
τ
(
τ ′ + κ′ + τκ− τ2 + v

(
κ2 − τ2

))
− (κ+ τ)

(
κ2 + τ2 + τ ′ − v (κ′ − τ ′)

)
√
2

√
2τ2 + (κ+ τ)

2
,

fΩ =
κ2 − τ2

√
2

√
2τ2 + (κ+ τ)

2
, gΩ = 0,

respectively. Finally, from the expression (4), we have the Gaussian and mean
curvatures as
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KΩ = −2

(
κ2 − τ2

2τ2 + (κ+ τ)
2

)2

, HΩ =
eΩ − 2fΩFΩ

2 (EΩ − F 2
Ω)

.

Corollary 3.17. If κ = τ , the ruled surface Ω (s, v) is developable.

Definition 3.18. The ruled surface generated by continuously moving the
vector NB along the γ3– Smarandache curve is defined as follows:

Γ (s, v) =
1√
2
(N +B) +

v√
2
(N +B) .

The first and second partial differentials of Γ (s, v) are

Γs =
1 + v√

2
(−κT − τN + τB) , Γv =

1√
2
(N +B) ,

Γss =

(
1 + v

2

)(
(−κ′ + τκ)T −

(
κ2 + τ2 + τ ′

)
N +

(
τ ′ − τ2

)
B
)
,

Γsv =
1√
2
(−κT − τN + τB) , Γvv = 0.

And the vectorial product of the vectors Γs , Γv and its norm are

Γs ∧ Γv =
1

2
(1 + v) (−2τT + κN − κB) ,

∥Γs ∧ Γv∥ =
1

2
(1 + v)

√
4τ2 + 2κ2.

From the expression (3), the normal of this surface shown by NΓ is given

NΓ =
−2τT + κN − κB√

4τ2 + 2κ2
.

Next, from the expressions (5) and (6), the coefficients of the first and the
second fundamental forms can be calculated as shown below:

EΓ =
1

2
(1 + v)

2
√
κ2 − 2τ2, FΓ = 0, GΓ = 1

and

eΓ =
(1 + v)

(
τ3 − κ3 − 3κτ2 + κ′τ − τ ′τ

)
2
√
2τ2 + κ2

, fΓ =
κτ − τ2

2
√
2τ2 + κ2

, gΓ = 0,

respectively. Finally, from the expression (4), we have the Gaussian and mean
curvatures as
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KΓ = −
(
κτ − τ2

)2
2(1 + v)

2
(κ2 + 2τ2)

√
κ2 − 2τ2

,

HΓ =
τ3 − κ3 − 3κτ2 + κ′τ − τ ′τ

2 (1 + v)
√
κ4 − 4τ4

, κ2 − 2τ2 ̸= 0.

Corollary 3.19. If τ = 0, the ruled surface Γ (s, v) is developable.

Definition 3.20. The ruled surface generated by continuously moving the
vector TNB along the γ3– Smarandache curve is defined as follows:

∆(s, v) =
1√
2
(N +B) +

v√
3
(T +N +B) .

The first and second partial differentials of ∆ (s, v) are

∆s =
1√
2
(−κT − τN + τB) +

v√
3
(−κT + (κ− τ)N + τB) ,

∆v =
1√
3
(T +N +B) ,

∆ss =



−
[

1√
2
(κ′ + τκ) +

v√
3

(
κ′ + κ2 − κτ

)]
T

−
[

1√
2

(
κ2 + τ2 + τ ′

)
− v√

3

(
κ2 + τ2 − κ′ + τ ′

)]
N

+

[
1√
2

(
τ ′ − τ2

)
+

v√
3

(
τ ′ − τ2 + τκ

)]
B


,

∆sv =
1√
3
(−κT + (κ− τ)N + τB) , ∆vv = 0.

And the vectorial product of the vectors ∆s , ∆v and its norm are

∆s ∧∆v =
1

6
(−2τT + 2κN + (τ − κ)B) +

v

3
((κ− 2τ)T + (κ+ τ)N + (τ − 2κ)B) ,

∥∆s ∧∆v∥ =
1

6

√
5κ2 + 5τ2 − 2κτ + 24v2 (κ2 + τ2 − κτ).

From the expression (3), the normal of this surface shown by N∆ is given

N∆ =
2 (−τ + v (κ− 2τ))T + 2 (κ+ v (κ+ τ))N + (τ − κ) (1 + 2v)B√

5κ2 + 5τ2 − 2κτ + 24v2 (κ2 + τ2 − κτ)
.
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Next, from the expressions (5) and (6), the coefficients of the first and the
second fundamental forms can be calculated as shown below:

E∆ =
1

2

(
κ2 + τ2

)
+

2v2

3

(
κ2 + τ2 − κτ

)
, F∆ = − κ√

6
, G∆ = 1

and

e∆ =



2 (−τ + v (κ− 2τ))

[
1√
2
(κ′ + τκ) +

v√
3

(
κ′ + κ2 − κτ

)]

−2 (κ+ v (κ+ τ))

[
1√
2

(
κ2 + τ2 + τ ′

)
− v√

3

(
κ2 + τ2 − κ′ + τ ′

)]

+(τ − κ) (1 + 2v)

[
1√
2

(
τ ′ − τ2

)
+

v√
3

(
τ ′ − τ2 + τκ

)]


√
5κ2 + 5τ2 − 2κτ + 24v2 (κ2 + τ2 − κτ)

,

f∆ =
−2 (−τ + v (κ− 2τ))κ+ 2 (κ+ v (κ+ τ)) (κ− τ) + (τ − κ) (1 + 2v) τ√

3
√
5κ2 + 5τ2 − 2κτ + 24v2 (κ2 + τ2 − κτ)

,

g∆ = 0,

respectively. Finally, from the expression (4), we have the Gaussian and mean
curvatures as

K∆ = − f2
∆

E∆ − F∆
2 , H∆ =

√
6e∆ − 2κf∆

2
(
E∆ − F∆

2
) .

Example: Let us consider the famous Viviani’s curve whose parametric form is
given by α(s) =

(
cos2 (s) , cos (s) sin (s) , sin (s)

)
. The Frenet vectors T (s), N(s), B(s)

are given as follows:

T (s) =

−2 cos (s) sin (s)√
cos (s)

2
+ 1

,
2 cos (s)

2 − 1√
cos (s)

2
+ 1

,
cos (s)√

cos (s)
2
+ 1

 ,

N(s) =


−

2
(
cos (s)

4
+ 2 cos (s)

2 − 1
)

√
3 cos (s)

2
+ 5

√
cos (s)

2
+ 1

,−
cos (s) sin (s)

(
2 cos (s)

2
+ 5
)

√
cos (s)

2
+ 1

√
3 cos (s)

2
+ 5

,

− sin (s)√
cos (s)

2
+ 1

√
3 cos (s)

2
+ 5


,
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B(s) =


(
2 cos (s)

2
+ 1
)
sin (s)√

3 cos (s)
2
+ 5

,− 2 cos (s)
3√

3 cos (s)
2
+ 5

,
2√

3 cos (s)
2
+ 5

 .

The graphs of ruled surfaces, obtained using these vectors and definitions and
given the parametric equations below, are presented in FIGURE 1, 2 and 3,
respectively.

Π (s, v) =
1√
2
(T +N) +

v√
2
(T +N) ,

Φ (s, v) =
1√
2
(T +N) +

v√
2
(T +B) ,

Σ (s, v) =
1√
2
(T +N) +

v√
2
(N +B) ,

Υ(s, v) =
1√
2
(T +N) +

v√
3
(T +N +B) ,

Ψ(s, v) =
1√
2
(T +B) +

v√
2
(T +N) ,

P (s, v) =
1√
2
(T +B) +

v√
2
(T +B) ,

Z (s, v) =
1√
2
(T +B) +

v√
2
(N +B) ,

F (s, v) =
1√
2
(T +B) +

v√
3
(T +N +B) ,

R(s, v) =
1√
2
(N +B) +

v√
2
(T +N) ,

Ω (s, v) =
1√
2
(N +B) +

v√
2
(T +B) ,

Γ (s, v) =
1√
2
(N +B) +

v√
2
(N +B) ,

∆(s, v) =
1√
2
(N +B) +

v√
3
(T +N +B) .
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Figure 1. The ruled surfaces whose the base curve γ1 –
Smarandache curve and the direction vector TN , TB, NB,
TNB respectively.
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Figure 2. The ruled surfaces whose the base curve γ2 –
Smarandache curve and the direction vector TN , TB, NB,
TNB, respectively.

Figure 3. The ruled surfaces whose the base curve γ3 –
Smarandache curve and the direction vector TN , TB, NB,
TNB, respectively.
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[5] M. Çetin and H. Kocayiğit, On the Quaternionic Smarandache Curves in Euclidean
3-Space, Int. J. Contemp. Math. Sciences 8 (2013), no. 3, 139–150.

[6] P. M. Do-Carmo, Differential geometry of curves and surfaces, IMPA, 1976.
[7] W. Fenchel, On the Differential Geometry of Closed Space Curves, Bulletin of American

Mathematical Society 57 (1951), 44–54.

[8] A. Gray, E. Abbena and S. Salamon, Modern differential geometry of curves and surfaces
with Mathematica, Chapman and Hall/CRC, 2017.
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[18] S. Şenyurt and D. Canlı, Some special Smarandache ruled surfaces by Frenet Frame in
E3 -I, Turkish Journal of Science 7 (2020), no. 1, 31–42.
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