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ON CHARACTERIZATIONS OF SPHERICAL CURVES

USING FRENET LIKE CURVE FRAME

Kemal Eren, Kebire Hilal Ayvaci∗, and Süleyman Şenyurt

Abstract. In this study, we investigate the explicit characterization of
spherical curves using the Flc (Frenet like curve) frame in Euclidean 3-

space. Firstly, the axis of curvature and the osculating sphere of a poly-
nomial space curve are calculated using Flc frame invariants. It is then

shown that the axis of curvature is on a straight line. The position vector

of a spherical curve is expressed with curvatures connected to the Flc
frame. Finally, a differential equation is obtained from the third order,

which characterizes a spherical curve.

1. Introduction

The theory of curves is one of the most important research topics in dif-
ferential geometry. Characterizations of curves are given with the help of the
orthonormal Frenet frame in 3-dimensional Euclidean space. Also, the curva-
ture of a curve and its torsion gives information about the local behavior of
this curve in space. The curvature of a curve indicates the amount of deviation
from the tangent line of the curve and as the amount of deviation gets smaller,
the curve has a closed appearance. In case of the curvature of a space curve
is non-zero, its torsion measures the amount of deviation from the osculating
plane determined by the tangent and normal vectors of the curve. Thus, we can
say that a moving curve is characterized with the help of a differential equation
involving the curvature and torsion of the curve. If the second derivative of a
space curve is zero, then the Frenet frame cannot be defined. Therefore, alter-
native frames are needed to solve this problem. One of these alternative frames
is the Flc frame defined by Dede et al. [11]. The Flc frame is advantageous if
the second or higher-order derivatives of the curve are zero. For this reason,
the characterizations of spherical curves according to the Flc frame are inves-
tigated in this study. The differential equation characterizing a spherical curve
is first given by Wong [16, 17]. Later, in 1971, Breuer and Gottlieb work on the
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solvability of the differential equation which characterizes a spherical curve [8].
Dannon searches that the spherical curves in E4 are expressed with Frenet-like
equations. Therefore, finding an integral characterization for a spherical curve
in E4 is the same as finding for the Frenet curve in E3 [10]. Mehlum and Wimp
investigate in 1985 that the position vector of any spherical curve can be given
as the solution of a third-order linear differential equation [14]. The spherical
curves have been examined from different perspectives [13, 15, 9]. Also, some
studies of spherical indicatrices which generalizing the concept of the spherical
indicatrix to the involute of a curve and Bertrand mate of a curve are given by
[1, 2, 3, 4, 5, 6, 7].
The aim of our study is to characterize spherical curves when the higher order
derivatives of the space curves are zero. First of all, the geometrical location of
the center of the spheres with sufficiently close common three points and suf-
ficiently close common four points with a given curve according to this frame
is found and defined as the axis of curvature and the sphere of curvature, re-
spectively. It is then shown that the axis of curvature of the given curve is
on a straight line. Then the position vector of a spherical curve is expressed
in terms of Flc frame invariants. Finally, using the Flc frame, it is concluded
that the position vector of any spherical curve can be given as the solution of
a third-order differential equation.

2. Preliminaries

In this section, we express some basic concepts that are used throughout
the paper. Let α = α(s) be a differentiable curve. The Frenet vectors of a
space curve α = α(s) are defined by

T (s) =
α

′
(s)

∥α′(s)∥
, B(s) =

α
′
(s) ∧ α

′′
(s)

∥α′(s) ∧ α′′(s)∥
and N(s) = B(s) ∧ T (s).

Also, the Frenet formulas are given as follows:

T ′ = κνN, N ′ = −κνT + τνB, B′ = −τνN , ∥α′∥ = ν,

where κ and τ are the curvature and torsion of the curve α [12]. But if the

second or higher order derivatives of the curve are zero, then
∥∥∥α′

(s) ∧ α
′′
(s)
∥∥∥ =

0. Therefore, the Frenet frame cannot be defined. To solve this problem, an
alternative frame defined on the curve is needed. Therefore, in 2019, Dede et
al. defined a new frame called ”Flc frame” along a polynomial curve [11]. With
the help of this Flc frame, it has become possible to make calculations on the
curve.
Let α = α(s) be a polynomial curve. The tangent vector, the binormal-like
vector, and the normal-like vector of the Flc frame along the curve α are defined
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by

T (s) =
α

′
(s)

∥α′(s)∥
, D1(s) =

α
′
(s) ∧ α(n)(s)∥∥α′(s) ∧ α(n)(s)

∥∥ and D2(s) = D1(s) ∧ T (s),

respectively, where ′ is denoted derivative of the curve in terms of s parame-
ter and also, (n) is denoted n. order derivative of the curve. The curvatures
d1, d2, d3 of the curve are

d1 =
⟨T ′, D2⟩

v
, d2=

⟨T ′, D1⟩
v

, d3 =

〈
D2

′, D1

〉
v

,

where ∥α′∥ = ν. The derivative formulas of the Flc frame are called the Frenet-
like derivative formulas and are as follows:

T ′ = ν
(
d1D2 + d2D1

)
, D′

2 = ν
(
− d1T + d3D1

)
, D′

1 = −ν
(
d2T + d3D2

)
.(1)

Definition 2.1. Let α be a curve given with coordinate neighborhood (I, α)
in E3. If α ⊂ S2 then the curve α is called a spherical curve of E3 [16, 8, 9].

Definition 2.2. The geometric locus of centers of the spheres having suf-
ficiently close common three points with curve α ⊂ E3 at the point α(s0) ∈ α
is called axis of curvature at the point α(s0) ∈ α [16, 8, 9].

Definition 2.3. The sphere having sufficiently close common four points
at α(s0) ∈ α with the curve α ⊂ E3 is called the osculating sphere or curvature
sphere of the curve α at the point α(s0) ∈ α [16, 8, 9].

3. Characterizations of Spherical Curves using Flc Frame

In this section, let’s examine the characterizations of spherical curves ac-
cording to the Flc frame. First of all, with a polynomial curve given according
to this frame, the geometric locations of the centers of the spheres with suf-
ficiently close common three points and sufficiently close common four points
are be found. Then the position vector of a spherical curve is expressed by
the curvatures connected to the Flc frame. Finally, a third-order differential
equation characterizing a spherical curve is obtained using the Flc frame.

Theorem 3.1. Let α ⊂ E3 be a polynomial curve with coordinate neigh-
borhood (I, α) in E3. Then, the geometric locus of centers of the spheres having
sufficiently close common three points with curve α ⊂ E3 at the point α(s) are
determined by

M = α(s) +m2D2(s) +m3D1(s),
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where

m2(s) =
d1 ∓ d2

√
−1 + d21r

2 + d22r
2

d21 + d22
,

m3(s) =
d2 ∓ d1

√
−1 + d21r

2 + d22r
2

d21 + d22
such that mi : I −→ R for all s ∈ I.

Proof. Let α ⊂ E3 be a polynomial curve with coordinate neighborhood
(I, α) in E3. Let also M be the center and r be the radius of the sphere having
sufficiently close common three points with α, then we can define the following
function:

f : I −→R(2)

s −→f(s) =< M − α(s),M − α(s) > −r2

such that

f(s) = f ′(s) = f ′′(s) = 0.

From Eqs. (1) and (2), we obtain

f ′(s) = 0 =⇒< −α′(s),M − α(s) > + < M − α(s),−α′(s) >= 0,

=⇒< νT,M − α(s) >= 0,

=⇒ ν < T,M − α(s) >= 0, (ν ̸= 0)

=⇒< T,M − α(s) >= 0.(3)

Taking the derivative of Eq. (3), we have

< T ′,M − α(s) > + < T,−α′(s) >= 0.

Also, considering Eqs. (1) and (3), we find

< ν(d1D2 + d2D1),M − α(s) > + < T,−νT > = 0,

ν < (d1D2 + d2D1),M − α(s) > = ν,

< d1D2 + d2D1,M − α(s) > = 1.(4)

On the order hand, from the linear combination of the Flc frame’s vectors T ,
D2 and D1, we can easily express

M − α(s) = m1(s)T +m2(s)D2 +m3(s)D1,(5)

where m1,m2,m3 ∈ R. Considering Eqs. (3) and (5) together, it is found as

m1(s) =< T,M − α(s) >= 0.(6)

Similarly, considering Eqs. (4) and (5) together, we get

m2(s) =< D2,M − α(s) >,(7)

m3(s) =< D1,M − α(s) >
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so, there is

d1m2 + d2m3 = 1.(8)

Since f(s) = 0 and from Eqs. (2) and (5), we calculate

m2
2 +m2

3 = r2.(9)

The desired solution is obtained from the common solution of Eqs. (8) and
(9).

Corollary 3.2. Let α ⊂ E3 be a polynomial curve with coordinate neigh-
borhood (I, α) in E3. Then the center M of the sphere having sufficiently close
common three points with α is on a straight line.

Proof. From Theorem (3.1), we can write

M = α(s) +m2D2(s) +m3D1(s).

So, we can say that this equation is defined as a line parallel to D1 and passing
through point c(s) = α(s) +m2D2(s).

Theorem 3.3. Let α ⊂ E3 be a polynomial curve with coordinate neigh-
borhood (I, α) in E3. Then, the geometric locus of centers of the spheres having
sufficiently close common four points with curve α ⊂ E3 at the point α(s0) ∈ α
are

M = α(s) +m2D2(s) +m3D1(s)

such that

m2(s) =
d

′

2 + νd1d3

(d2

d1
)′d21 + νd3(d21 + d22)

,

m3(s) =
νd2d3 − d

′

1

(d2

d1
)′d21 + νd3(d21 + d22)

,

where mi : I −→ R, for all s ∈ I.

Proof. Since the sphere, which is called the osculating sphere, having suffi-
ciently close common four points with curve α, we have

f(s) = f ′(s) = f ′′(s) = f ′′′(s) = 0.

Also, from Eq. (4),

< d1D2 + d2D1,M − α(s) >= 1.

From the differential of this last equation with respect to s and considering Eq.
(1), we find as

− ν(d21 + d22) < T,M − α(s) > +(d′1 − d2d3ν) < D2,M − α(s) >

+ (d′2 + d1d3ν) < D1,M − α(s) >= 0.

Substituting Eqs. (6) and (7) in this last equation, we determinate

(d′1 − d2d3ν)m2 + (d′2 + d1d3ν)m3 = 0.(10)
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If the equations (8) and (10) are solved together, the desired is found.

Corollary 3.4. Let α ⊂ E3 be a polynomial curve with coordinate neigh-
borhood (I, α) in E3. Then the radius r of the osculating sphere having suffi-
ciently close common four points with curve α at point α(s) ∈ α is

r =

√
(d

′
2 + νd1d3)2 + (νd2d3 − d

′
1)

2

(d2

d1
)′d21 + νd3(d21 + d22)

.

Proof. If the center M of the osculating sphere at point α(s) ∈ α is

M = α(s) +m2D2(s) +m3D1(s),

we can write

r = ∥M − α(s),M − α(s)∥ =
√
m2

2 +m2
3.

Substituting the valuesm2 andm3 in the last equation, the desired is found.

Theorem 3.5. Let α ⊂ E3 be a polynomial curve lying on a sphere with
the center M and the radius r > 0, then the relation between the curvature d1
and d2 of α and the radius r of the sphere is given by

d1 + d2 ≥ 1

r
.

Proof. The sphere with the center M and the radius r can be represented
by

∥α−M∥ = r

or

< α−M,α−M >= r2.

Taking the derivative of this equation, we find

ν < T, α−M >= 0,

and since ν ̸= 0, we obtain

< T,α−M >= 0.

Taking the derivative of this equation again, it is found as

< T ′, α−M > + < T,α
′
> = 0,

ν < d1D2 + d2D1, α−M > +ν = 0, (ν ̸= 0)

< d1D2 + d2D1, α−M > +1 = 0.

Considering Cauchy-Schwartz inequality, we get

1 ≤∥d1D2 + d2D1∥.∥α−M∥
1 ≤(d1∥D2∥+ d2∥D1∥)r
1 ≤(d1 + d2)r.
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So, we have
1

r
≤ d1 + d2.

Theorem 3.6. Let S2
0 be a sphere centered at point 0 and (I, α) ⊂ S2

0 be
a spherical curve. Then the following equations are satisfied

< α(s), T (s) >= −m1(s),

< α(s), D2(s) >= −m2(s),

< α(s), D1(s) >= −m3(s),

where T , D2 and D1 are the Flc frame’s vectors, mi : I −→ R for all s ∈ I.

Proof. Let α ⊂ S2
0 be a spherical curve with he arc-length parameter s and

be S2
0 a sphere with the radius r. Then we can write

∥
−−−−→
Oα(s)∥ = ∥

−−→
α(s)∥ = r,√

< α(s), α(s) > = r,

< α(s), α(s) >= r2.(11)

From derivative of Eq. (11) in terms of s, it is obtained

< α′(s), α(s) > = 0,

ν < T (s), α(s) > = 0, (ν ̸= 0)

< T (s), α(s) > = 0.

Also, if α(s) is a point on the spherical curve α, the position vector of the
spherical curve is written as

−−−−→
α(s)O = m1T +m2D2 +m3D1,

−α(s) = m1(s)T (s) +m2(s)D2(s) +m3(s)D1(s),

α(s) = −m1(s)T (s)−m2(s)D2(s)−m3(s)D1(s).

From the Euclidean inner product of the last equation and the vectors T (s),
D2(s), D1(s), the proof is completed.

Corollary 3.7. Let S2
0 be a sphere centered at point 0 and α be a curve

on S2
0 . Then the osculating sphere of α is S2

0 dir.

Corollary 3.8. Let S2
0 be a sphere centered at point 0 and α be a curve

on S2
0 , then the position vector of the spherical curve α

α(s) = −m2(s)D2(s)−m3(s)D1(s)

= − d
′

2 + νd1d3

(d2

d1
)′d21 + νd3(d21 + d22)

D2(s)−
νd2d3 − d

′

1

(d2

d1
)′d21 + νd3(d21 + d22)

D1(s).
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Theorem 3.9. Let X = X(s) be a curve lying on a sphere with the center
0 and the radius r, then the differential equation characterizing the curve X =
X(s) is represented as

v2
(
d1d

′
1 + d2d

′
2

)
X ′′′ −

(
v2
(
(d2d3v − d′1)

2 + (d1d3v + d′2)
2)+ 3vv′(d1d

′
1 + d2d

′
2)

)
X ′′

+

(
(d1d

′
1 + d2d

′
2)
(
v4(d21 + d22) + 3(v′)2 − vv′′

)
+ vv′

(
(d2d3v − d′1)

2 + (d1d3v − d′2)
2))X ′

−
(
v4
(
d22d3v + d21(−d3v + (

d2
d1

)′)
))(

d21d3v + d2(d2d3v − d′1) + d1d
′
2

)
X = 0

where d1, d2 and d3 are the curvatures of the curve.

Proof. From Corollary (3.8), the position vector of the spherical curve X =
X(s) can be written as

X(s) = − d
′

2 + νd1d3

(d2

d1
)′d21 + νd3(d21 + d22)

D2(s)−
νd2d3 − d

′

1

(d2

d1
)′d21 + νd3(d21 + d22)

D1(s).(12)

On the other hand, taking the first, second, and third derivatives of the curve
X = X(s), we obtain

X ′(s) = vT (s),

X ′′(s) = vv′
X ′(s)

v
+ v2d1D2(s) + v2d2D1(s),(13)

X ′′′(s) =
(
v′′ − v3d21 − v3d22

)X ′(s)

v
+
(
3vv′d1 + v2d′1 − v3d2d3

)
D2(s)(14)

+
(
3vv′d2 + v3d1d3 + v2d′2

)
D1(s).

Considering Eqs. (13) and (14) together, we calculate

D2(s) = −

d32X
′v4 − v(d1d3v + d′2)(X

′′v −X ′v′)
+d2

(
X ′′′v2 + d21X

′v4 + 3X ′(v′)2 + v(3X ′′v′ +X ′v′′)
)

v4
(
d21d3v + d2(d2d3v − d′1) + d1d′2

) ,

D1(s) = −

d31X
′v4 + v(d2d3v − d′1)(X

′′v −X ′v′)
+d1

(
X ′′′v2 + d22X

′v4 + 3X ′(v′)2 − v(3X ′′v′ +X ′v′′)
)

v4
(
d21d3v + d2(d2d3v − d′1) + d1d′2

) .

Substituting the values D1 and D2 in Eq. (12), the differential equation char-
acterizing the curve X = X(s) is found. So the proof is completed.
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4. Examples

Let us consider a helical polynomial curve parameterized as α(s) = (6s, 3s2, s3).
Then the Flc frame elements of α are given by

T (s) =

(
2

s2 + 2
,

2s

s2 + 2
,

s2

s2 + 2

)
, D1(s) =

(
s√

s2 + 1
,

−1√
s2 + 1

, 0

)
,

D2(s) =

(
− s2√

s2 + 1(s2 + 2)
,− s3√

s2 + 1(s2 + 2)
,
2
√
s2 + 1

s2 + 2

)
and the corresponding curvatures according to Flc frame are as following:

d1(s) =
s√

s2 + 1
, d2(s) = − 1√

s2 + 1
, d3(s) =

s2

2(s2 + 1)
.

The center of the osculating sphere of the curve is the center of the sphere in
which it is located. If the center and radius of the osculating sphere are found
for any point, it is seen that this point satisfies the equation ∥α(s)−M∥2 = R2

for ∀s ∈ I. For s = 1, we find

T (1) =

(
2

3
,
2

3
,
1

3

)
, D1(1) =

(
1

2
,−1

2
, 0

)
, D2(1) =

(
− 1

3
√
2
,− 1

3
√
2
,
2
√
2

3

)
.

If the curve is a spherical curve, we obtain

m2(s) =
3

2
(s2 + 2)2, m3(s) = 3s(s2 + 2)2

and for s = 1, we can write

m2(1) =
27

2
, m3(1) = 27.

Thus, the center of the osculating sphere is

M = α(1) +m2(1)D2(1) +m3(1)D1(1)

=

(
6,−21

2
, 28

)
and the radius of the osculating sphere is R = 27

√
5

2 .

5. Conclusion

In this study, spherical curves are redefined according to the Flc frame and
the characterizations of spherical curves are reconsidered in terms of Flc frame
invariants. The axis of curvature and curvature of the sphere (osculating sphere
) of the polynomial curve is found and it is shown that the axis of curvature
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is on a straight line. Finally, the differential equation characterizing a given
spherical curve is found.
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[6] M. Bilici, E. Ergün, and M. Çalıskan, A new approach to natural lift curves of the

spherical indicatrices of timelike Bertrand mate of a spacelike curve in Minkowski 3-
space, International Journal of Mathematical Combinatorics 1 (2015), 35–48.
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