GENERALIZED SMARANDACHE CURVES WITH FRENET-TYPE FRAME

Zehra İşbilí* and Murat Tosun

Abstract

In this study, we investigate Smarandache curves with Frenettype frame in Myller configuration for Euclidean 3-space E_{3}. Also, we introduce some characterizations and invariants of them. Then, we construct a numerical example with respect to these special Smarandache curves in order to understand the obtained materials.

1. Introduction

The theory of curves has quite an importance and applications in several work-frames such as; mathematics, architecture, engineering, etc., and also attracts a lot of researchers. It is one of the most important concepts of classical differential geometry in mathematics, as well. Additionally, one of the most popular examples of the special curves is Smarandache curves, which are determined as the regular curve constructed by these vectors, when the Frenet vectors of the unit speed regular curve are taken as position vectors [2, 29].

On the other hand, the Frenet-Serret frame, which was founded by two researchers Frenet [8] and Serret [18], was a milestone for classical differential geometry. Then, several researchers investigated some new types of moving frames like Darboux frame [6]. In [16], the concepts of the geometry of Myller configurations $\mathfrak{M}(C, \bar{\xi}, \pi)$ and tangent Myller configuration $\mathfrak{M}_{t}(C, \bar{\xi}, \pi)$ are examined. As a generalization, a versor field (namely a unit vector field) and a plane field are denoted by $(C, \bar{\xi})$ and (C, π), respectively. A couple $\{(C, \bar{\xi}),(C, \pi)\}$ where $\bar{\xi} \in \pi$ is called a Myller configuration and denoted by $\mathfrak{M}(C, \bar{\xi}, \pi)$. If the planes π are tangent to C, it is called a tangent Myller configuration $\mathfrak{M}_{t}(C, \bar{\xi}, \pi)[13,15,16]$. Additionally, if C is a curve on the surface S, the geometry of the field $(C, \bar{\xi})$ on surface S is the geometry of the associated Myller configurations $\mathfrak{M}_{t}(C, \bar{\xi}, \pi)$. Moreover, the Darboux frame is investigated for a Myller configuration $\mathfrak{M}(C, \bar{\xi}, \pi)$. Miron studied the Myller configuration in some studies $[16,17]$. We want to refer to the book [16] detailed terminology

Received May 3, 2023. Accepted December 29, 2023.
2020 Mathematics Subject Classification. 58B34, 58J42, 81T75.
Key words and phrases. Myller configuration, Frenet-type frame, Smarandache curves, versor field.
*Corresponding author
concerning the concept of Myller configuration.
In the existing literature, Myller configuration is examined in several studies. Macsim et al. scrutinized the special curves in a Myller configuration and also their properties [14]. Moreover, rectifying curves [13], Bertrand curves [15] in Myller configuration, and also Myller configuration for 4-dimensional Lorentz spaces [9] were determined. Additionally, İşbilir and Tosun introduced the osculating-type curves in Myller configuration in Euclidean 3-space E_{3} [11], rectifying-type curves in Myller configuration for Euclidean 4-space E_{4} in [10].

When the literature is examined, several researchers combined the Smarandache curves and different types special frames and special curves. Ali introduced the Smarandache curves with Frenet frame [1] and Taşköprü and Tosun investigated the Smarandache curves related to Sabban frame [28]. Furthermore, Alıç and Yılmaz studied the Smarandache curves with NCW-frame [2]. Çetin et al. investigated the Smarandache curves with respect to Bishop frame [5]. Then, Yılmaz and Savcı introduced Smarandache curves for type-2 Bishop frame [30]. Bektaş and Yüce determined the Smarandache curves with the Darboux frame in Euclidean 3-space [4]. Additionally, in [21], an application for Smarandache curves according to Frenet frame was given by Şenyurt and Sivas. Şenyurt and Öztürk studied the Salkowski and anti-Salkowski curves concerning the Smarandache curves with Frenet frame in [19, 20], respectively. Then, Şenyurt et al. studied the Smarandache curves with Flc frame [26]. Also, some studies had been completed in Minkowski space such as; Bayrak et al. [3] studied the Smarandache curves according to Frenet frame in Minkowski space, and Turgut and Yılmaz introduced the Smarandache curves with Frenet frame in Minkowski 4-space in [29]. Şenyurt and Eren gave the Smarandache curves of spacelike Salkowski curves with a spacelike principal normal related to Frenet frame [22] and Smarandache curves of spacelike anti-Salkowski curves with a timelike principal normal related to the Frenet frame [23]. Also, Senyurt and Eren introduced Smarandache curves established from the spacelike antiSalkowski curve with a spacelike principal normal according to Frenet frame [24] and Smarandache curves established from spacelike Salkowski curves with timelike principal normal according to the Frenet frame [25]. In addition to these, Karaman [12] and Demircan [7] studied the Smarandache curves in their master thesis.

In this paper, we investigate the Smarandache curves with Frenet-type frame in Myller configuration for Euclidean 3-space E_{3}. Due to the geometry of versor fields along a curve with Frenet-type frame in Myller configuration for Euclidean 3-space E_{3} is a generalization of the theory of curves in classical Euclidean 3 -space ${ }^{1}$, we construct a generalization for Smarandache curves. After giving these special and generalized Smarandache curves, we obtain some characterizations and invariants of them. We also give relations between the

[^0]Smarandache curves with Frenet-type frame in Myller configuration for Euclidean 3 -space and Frenet frame in Euclidean 3-space. Moreover, we construct a numerical example with respect to these special Smarandache curves to understand the obtained materials.

2. Frenet-Type Frame in Myller Configuration

In this section, we remind some backgrounds with respect to the Frenet-type frame in Myller configuration for 3-dimensional Euclidean space.

Let $(C, \bar{\xi})$ be a versor field and let $\bar{r}(s)$ be a position vector of the curve C, where s is the arc-length on the curve C. For Frenet-type frame $\mathcal{R}_{F}=\left\{P, \bar{\xi}_{1}, \bar{\xi}_{2}, \bar{\xi}_{3}\right\}$ of versor field, then we can write:

$$
\begin{equation*}
\bar{r}^{\prime}(s)=a_{1}(s) \bar{\xi}_{1}(s)+a_{2}(s) \bar{\xi}_{2}(s)+a_{3}(s) \bar{\xi}_{3}(s) \tag{1}
\end{equation*}
$$

where $a_{1}^{2}(s)+a_{2}^{2}(s)+a_{3}^{2}(s)=1$. Also, the following equations are satisfied:

$$
\left\{\begin{array}{l}
\bar{\xi}_{1}^{\prime}(s)=K_{1}(s) \bar{\xi}_{2}(s) \tag{2}\\
\bar{\xi}_{2}^{\prime}(s)=-K_{1}(s) \bar{\xi}_{1}(s)+K_{2}(s) \bar{\xi}_{3}(s) \\
\bar{\xi}_{3}^{\prime}(s)=-K_{2}(s) \bar{\xi}_{2}(s)
\end{array}\right.
$$

where $K_{1}>0 . K_{1}$-curvature and K_{2}-torsion have the same geometrical interpretation as the curvature and torsion of a curve in E_{3}. It should be noted that if $a_{1}(s)=1, a_{2}(s)=0$, and $a_{3}(s)=0$, then we get the Frenet equations of a regular curve in 3 -dimensional Euclidean space $E_{3}[8,16,18]$. The fundamental theorem of invariants for versor field $(C, \bar{\xi})$ is expressed as follows [16]:

Theorem 2.1 ([16]). If the invariants $K_{1}(s), K_{2}(s), a_{1}(s), a_{2}(s), a_{3}(s)$, with $a_{1}^{2}(s)+a_{2}^{2}(s)+a_{3}^{2}(s)=1$ are smooth functions for $s \in[a, b]$, then there exist a curve $C:[a, b] \rightarrow E_{3}$ parametrized by arc-length s and a versor field $\bar{\xi}(s)$, $s \in[a, b]$, whose curvature, torsion and the functions $a_{i}(s)$ are $K_{1}(s), K_{2}(s)$ and $a_{i}(s), i=1,2,3$, respectively. Any two such versor fields $(C, \bar{\xi})$ differ by a proper Euclidean motion.

3. Smarandache Curves in Myller Configuration

In this section, we determine the Smarandache curves, which can be called also generalized Smarandache curves, with Frenet-type frame in Myller configuration for Euclidean 3 -space E_{3}. We also give the invariants of them and present relations between the Frenet-type frame in Myller configuration Euclidean 3 -space and the Frenet frame in Euclidean 3-space. Then, we give a numerical example with respect to the Smarandache curves with Frenet-type frame in Myller configuration for Euclidean 3-space E_{3}.

It should be noted that we use the following notation $\bar{r}(s)=\bar{r}$, $\bar{r}_{i}^{*}\left(s^{*}\right)=\bar{r}_{i}^{*}, \bar{\xi}_{i}(s)=\bar{\xi}_{i}, \bar{\xi}_{i}^{*}\left(s^{*}\right)=\bar{\xi}_{i}^{*}, K_{i}(s)=K_{i}, K_{i}^{*}\left(s^{*}\right)=K_{i}^{*}, a_{i}(s)=a_{i}$ and $a_{i}^{*}\left(s^{*}\right)=a_{i}^{*}$ for $i=1,2,3$, for the sake of brevity.

3.1. Generalized $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curves

Definition 3.1. Let $\bar{r}: I \rightarrow E_{3}$ for the arc-length parameter $s \in I$ be a regular curve with the Frenet-type frame $\mathcal{R}_{F}=\left\{\bar{\xi}_{1}, \bar{\xi}_{2}, \bar{\xi}_{3}, K_{1}, K_{2}\right\}$ in Myller configuration for Euclidean 3 -space E_{3}. The curve $\bar{r}_{1}^{*}: J \rightarrow E_{3}$ for the arclength parameter $s^{*} \in J$ is determined as follows:

$$
\begin{equation*}
\bar{r}_{1}^{*}=\frac{1}{\sqrt{2}}\left(\bar{\xi}_{1}+\bar{\xi}_{2}\right), \tag{3}
\end{equation*}
$$

which is called $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curve.
Now, let us introduce the invariants of the $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curves with the Frenet-type frame in Myller configuration for E_{3} related to the curve \bar{r}. By taking the derivative of the equation (3) with respect to the parameter s, then we get:

$$
\begin{equation*}
\left(\bar{r}_{1}^{*}\right)^{\prime}=\frac{d \bar{r}_{1}^{*}}{d s^{*}} \frac{d s^{*}}{d s}=\frac{1}{\sqrt{2}}\left(\bar{\xi}_{1}^{\prime}+\bar{\xi}_{2}^{\prime}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a_{1}^{*} \bar{\xi}_{1}^{*}+a_{2}^{*} \bar{\xi}_{2}^{*}+a_{3}^{*} \bar{\xi}_{3}^{*}\right) \frac{d s^{*}}{d s}=\frac{1}{\sqrt{2}}\left(-K_{1} \bar{\xi}_{1}+K_{1} \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}\right) \tag{5}
\end{equation*}
$$

where

$$
\frac{d s^{*}}{d s}=\sqrt{\frac{2 K_{1}^{2}+K_{2}^{2}}{2}} .
$$

By using the equations (4) and (5), we have:

$$
a_{1}^{*} \bar{\xi}_{1}^{*}+a_{2}^{*} \bar{\xi}_{2}^{*}+a_{3}^{*} \bar{\xi}_{3}^{*}=\frac{-K_{1} \bar{\xi}_{1}+K_{1} \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{2 K_{1}^{2}+K_{2}^{2}}}
$$

and then

$$
\left\{\begin{array}{l}
a_{1}^{*}=\left\langle\frac{-K_{1} \bar{\xi}_{1}+K_{1} \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{2 K_{1}^{2}+K_{2}^{2}}}, \bar{\xi}_{1}^{*}\right\rangle \\
a_{2}^{*}=\left\langle\frac{-K_{1} \bar{\xi}_{1}+K_{1} \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{2 K_{1}^{2}+K_{2}^{2}}}, \bar{\xi}_{2}^{*}\right\rangle \\
a_{3}^{*}=\left\langle\frac{-K_{1} \bar{\xi}_{1}+K_{1} \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{2 K_{1}^{2}+K_{2}^{2}}}, \bar{\xi}_{3}^{*}\right\rangle
\end{array}\right.
$$

We get the first versor field $\bar{\xi}_{1}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curve as follows:

$$
\begin{equation*}
\bar{\xi}_{1}^{*}=\frac{-K_{1} \bar{\xi}_{1}+K_{1} \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{a_{1}^{*} \sqrt{2 K_{1}^{2}+K_{2}^{2}}}-\frac{a_{2}^{*}}{a_{1}^{*}} \bar{\xi}_{2}^{*}-\frac{a_{3}^{*}}{a_{1}^{*}} \bar{\xi}_{3}^{*}, \tag{6}
\end{equation*}
$$

where $a_{1}^{*} \neq 0$. Differentiating the equation (6) with respect to the parameter s, we have:

$$
\begin{aligned}
\frac{d \bar{\xi}_{1}^{*}}{d s}= & \frac{d \bar{\xi}_{1}^{*}}{d s^{*}} \frac{d s^{*}}{d s} \\
= & \dot{\bar{\xi}}_{1}^{*} \frac{d s^{*}}{d s} \\
= & \frac{\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}}{\left(a_{1}^{*}\right)^{2}\left(2 K_{1}^{2}+K_{2}^{2}\right)^{3 / 2}}-\left(\frac{\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{2}^{*} \\
& -\frac{a_{2}^{*}}{a_{1}^{*}}\left(-K_{1}^{*} \bar{\xi}_{1}^{*}+K_{2}^{*} \bar{\xi}_{3}^{*}\right) \frac{d s^{*}}{d s}-\left(\frac{\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{3}^{*} \\
& +\left(\frac{a_{3}^{*} K_{2}^{*}}{a_{1}^{*}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{2}^{*},
\end{aligned}
$$

where

$$
\left\{\begin{aligned}
\mu= & a_{1}^{*}\left(-K_{1}^{\prime}-K_{1}^{2}\right)\left(2 K_{1}^{2}+K_{2}^{2}\right) \\
& +K_{1}\left[\dot{a}_{1}^{*} \frac{d s^{*}}{d s}\left(2 K_{1}^{2}+K_{2}^{2}\right)+a_{1}^{*}\left(2 K_{1} K_{1}^{\prime}+K_{2} K_{2}^{\prime}\right)\right] \\
\eta= & a_{1}^{*}\left(-K_{1}^{2}+K_{1}^{\prime}-K_{2}^{2}\right)\left(2 K_{1}^{2}+K_{2}^{2}\right) \\
& -K_{1}\left[\dot{a}_{1}^{*} \frac{d s^{*}}{d s}\left(2 K_{1}^{2}+K_{2}^{2}\right)+a_{1}^{*}\left(2 K_{1} K_{1}^{\prime}+K_{2} K_{2}^{\prime}\right)\right] \\
\rho= & a_{1}^{*}\left(K_{1} K_{2}+K_{2}^{\prime}\right)\left(2 K_{1}^{2}+K_{2}^{2}\right) \\
& -K_{2}\left[\dot{a}_{1}^{*} \frac{d s^{*}}{d s}\left(2 K_{1}^{2}+K_{2}^{2}\right)+a_{1}^{*}\left(2 K_{1} K_{1}^{\prime}+K_{2} K_{2}^{\prime}\right)\right]
\end{aligned}\right.
$$

Note that, $\dot{a_{1}^{*}}=\frac{d a_{1}^{*}}{d s^{*}}, \dot{a_{2}^{*}}=\frac{d a_{2}^{*}}{d s^{*}}$, and $\dot{a_{3}^{*}}=\frac{d a_{3}^{*}}{d s^{*}}$. Therefore, we obtain the following:

$$
\begin{aligned}
\dot{\bar{\xi}}_{1}^{*}= & \frac{d \bar{\xi}_{1}^{*}}{d s^{*}} \\
= & \frac{\sqrt{2}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right)}{\left(a_{1}^{*}\right)^{2}\left(2 K_{1}^{2}+K_{2}^{2}\right)^{2}}+\left(\frac{a_{2}^{*} K_{1}^{*}}{a_{1}^{*}}\right) \bar{\xi}_{1}^{*}-\left(\frac{\left.\dot{a}_{2}^{*} a_{1}^{*}-{\dot{a_{1}^{*}} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}}_{\left(a_{1}^{*}\right)^{2}}^{)}\right) \bar{\xi}_{2}^{*}}{}\right. \\
& -\left(\frac{\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \bar{\xi}_{3}^{*}
\end{aligned}
$$

Then, we get the K_{1}^{*}-curvature of the $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curve:

$$
K_{1}^{*}=\left\|\frac{d \bar{\xi}_{1}^{*}}{d s^{*}}\right\|=\frac{\psi}{\left(a_{1}^{*}\right)^{2}\left(2 K_{1}^{2}+K_{2}^{2}\right)^{2}},
$$

where

$$
\psi=\sqrt{2\left(\mu^{2}+\eta^{2}+\rho^{2}\right)+\left(\begin{array}{l}
\left(a_{1}^{*} a_{2}^{*} K_{1}^{*}\right)^{2} \\
+\left(\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right)^{2} \\
+\left(\dot{a}_{3}^{*} a_{1}^{*}-\dot{\left.a_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right)^{2}}\right.
\end{array}\right)\left(2 K_{1}^{2}+K_{2}^{2}\right)^{4}} .
$$

The versor field $\bar{\xi}_{2}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curve is expressed as follows:
$\bar{\xi}_{2}^{*}=\frac{\sqrt{2}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right)+\left(\begin{array}{c}a_{1}^{*} a_{2}^{*} K_{1}^{*} \bar{\xi}_{1}^{*} \\ -\left(\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right) \bar{\xi}_{2}^{*} \\ -\left(\dot{\left.a_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right) \bar{\xi}_{3}^{*}}\right)\end{array}\right)\left(2 K_{1}^{2}+K_{2}^{2}\right)^{2}}{\psi}$.

The versor field $\bar{\xi}_{3}^{*}=\bar{\xi}_{1}^{*} \times \bar{\xi}_{2}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curve is written with the help of the vector product as follows:

$$
\begin{aligned}
& \bar{\xi}_{3}^{*}=\frac{\sqrt{2}\left(\left(K_{1} \rho-K_{2} \eta\right) \bar{\xi}_{1}+\left(K_{1} \rho+K_{2} \mu\right) \bar{\xi}_{2}-K_{1}(\mu+\eta) \bar{\xi}_{3}\right)}{\psi a_{1}^{*} \sqrt{2 K_{1}^{2}+K_{2}^{2}}} \\
& +\frac{\left(2 K_{1}^{2}+K_{2}^{2}\right)^{2}}{\psi}\left[\begin{array}{l}
\binom{\frac{a_{2}^{*}}{a_{1}^{*}}\left(\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right)}{-\frac{a_{3}^{*}}{a_{1}^{*}}\left(\dot{a}_{2}^{*} a_{1}^{*}-a_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right)} \bar{\xi}_{1}^{*} \\
-a_{2}^{*} a_{3}^{*} K_{1}^{*} \bar{\xi}_{2}^{*}+\left(a_{2}^{*}\right)^{2} K_{1}^{*} \bar{\xi}_{3}^{*}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\left(-\frac{a_{2}^{*}}{a_{1}^{*}} \bar{\xi}_{2}^{*}-\frac{a_{3}^{*}}{a_{1}^{*}} \bar{\xi}_{3}^{*}\right) \times \frac{1}{\psi}\left(\sqrt{2}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right)\right)\right],
\end{aligned}
$$

and also the K_{2}^{*}-torsion of the $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curve can be calculated as $K_{2}^{*}\left(s^{*}\right)=-\frac{\dot{\bar{\xi}}_{3}^{*}}{\bar{\xi}_{2}^{*}}$.

Special Case 3.2. Because of the fact that the geometry of versor fields along a curve with Myller configuration in Euclidean 3-space E_{3} is a generalization of the usual theory of curves in E_{3}, we can get the following special case:

- If we take $a_{1}=a_{1}^{*}=1, a_{2}=a_{2}^{*}=a_{3}=a_{3}^{*}=0$ in the written equations in this subsection for $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curves with Frenet-type frame in Myller configuration for E_{3}, then we get the TN-Smarandache curves with Frenet frame in E_{3} (see [1, 7, 12]).

3.2. Generalized $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curves

Definition 3.3. Let $\bar{r}: I \rightarrow E_{3}$ for the arc-length parameter $s \in I$ be a regular curve with Frenet-type frame $\mathcal{R}_{F}=\left\{\bar{\xi}_{1}, \bar{\xi}_{2}, \bar{\xi}_{3}, K_{1}, K_{2}\right\}$ in Myller configuration for Euclidean 3-space E_{3}. The curve $\bar{r}_{2}^{*}: J \rightarrow E_{3}$ for the arclength parameter $s^{*} \in J$ is determined as follows:

$$
\begin{equation*}
\bar{r}_{2}^{*}=\frac{1}{\sqrt{2}}\left(\bar{\xi}_{1}+\bar{\xi}_{3}\right), \tag{7}
\end{equation*}
$$

which is called $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curve.

Let us give the invariants of the Frenet-type frame in Myller configuration for $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curves related to the curve \bar{r}. Differentiating the equation (7) with respect to the parameter s, we have:

$$
\begin{equation*}
\left(\bar{r}_{2}^{*}\right)^{\prime}=\frac{d \bar{r}_{2}^{*}}{d s^{*}} \frac{d s^{*}}{d s}=\frac{1}{\sqrt{2}}\left(\bar{\xi}_{1}^{\prime}+\bar{\xi}_{3}^{\prime}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a_{1}^{*} \bar{\xi}_{1}^{*}+a_{2}^{*} \bar{\xi}_{2}^{*}+a_{3}^{*} \bar{\xi}_{3}^{*}\right) \frac{d s^{*}}{d s}=\frac{1}{\sqrt{2}}\left(K_{1} \bar{\xi}_{2}-K_{2} \bar{\xi}_{2}\right) \tag{9}
\end{equation*}
$$

where

$$
\frac{d s^{*}}{d s}=\sqrt{\frac{\left(K_{1}-K_{2}\right)^{2}}{2}}=\frac{\sqrt{\left(K_{1}-K_{2}\right)^{2}}}{\sqrt{2}}=\frac{\left|K_{1}-K_{2}\right|}{\sqrt{2}} .
$$

With the help of the equations (8) and (9), we get:

$$
a_{1}^{*} \bar{\xi}_{1}^{*}+a_{2}^{*} \bar{\xi}_{2}^{*}+a_{3}^{*} \bar{\xi}_{3}^{*}=\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\sqrt{\left(K_{1}-K_{2}\right)^{2}}}=\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\left|K_{1}-K_{2}\right|}
$$

and also

$$
\left\{\begin{array}{l}
a_{1}^{*}=\left\langle\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\sqrt{\left(K_{1}-K_{2}\right)^{2}}}, \bar{\xi}_{1}^{*}\right\rangle=\left\langle\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\left|K_{1}-K_{2}\right|}, \bar{\xi}_{1}^{*}\right\rangle \\
a_{2}^{*}=\left\langle\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\sqrt{\left(K_{1}-K_{2}\right)^{2}}}, \bar{\xi}_{2}^{*}\right\rangle=\left\langle\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\left|K_{1}-K_{2}\right|}, \bar{\xi}_{2}^{*}\right\rangle \\
a_{3}^{*}=\left\langle\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\sqrt{\left(K_{1}-K_{2}\right)^{2}}}, \bar{\xi}_{3}^{*}\right\rangle=\left\langle\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\left|K_{1}-K_{2}\right|}, \bar{\xi}_{3}^{*}\right\rangle
\end{array}\right.
$$

where $K_{1} \neq K_{2}$. We can write the versor field $\bar{\xi}_{1}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curve as:

$$
\begin{equation*}
\bar{\xi}_{1}^{*}=\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{a_{1}^{*} \sqrt{\left(K_{1}-K_{2}\right)^{2}}}-\frac{a_{2}^{*}}{a_{1}^{*}} \bar{\xi}_{2}^{*}-\frac{a_{3}^{*}}{a_{1}^{*}} \bar{\xi}_{3}^{*}, \tag{10}
\end{equation*}
$$

where $a_{1}^{*} \neq 0$. Taking differentiation of the equation (10) according to the parameter s, we obtain:

$$
\begin{aligned}
\frac{d \bar{\xi}_{1}^{*}}{d s} & =\frac{d \bar{\xi}_{1}^{*}}{d s^{*}} \frac{d s^{*}}{d s} \\
& =\dot{\bar{\xi}}_{1}^{*} \frac{d s^{*}}{d s} \\
& =\frac{\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}}{\left(a_{1}^{*}\right)^{2}\left(K_{1}-K_{2}\right)^{2} \sqrt{\left(K_{1}-K_{2}\right)^{2}}}-\left(\frac{\dot{a_{2}^{*}} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{2}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a_{2}^{*}}{a_{1}^{*}}\left(-K_{1}^{*} \bar{\xi}_{1}^{*}+K_{2}^{*} \bar{\xi}_{3}^{*}\right) \frac{d s^{*}}{d s}-\left(\frac{\left.\dot{a_{3}^{*}} a_{1}^{*}-{\dot{a_{1}^{*}} a_{3}^{*}}_{\left(a_{1}^{*}\right)^{2}}^{)}\right) \frac{d s^{*}}{d s} \bar{\xi}_{3}^{*}}{+\left(\frac{a_{3}^{*} K_{2}^{*}}{a_{1}^{*}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{2}^{*}}\right.
\end{aligned}
$$

where

$$
\left\{\begin{aligned}
\mu= & -a_{1}^{*} K_{1}\left(K_{1}-K_{2}\right)^{3} \\
\eta= & a_{1}^{*}\left(K_{1}^{\prime}-K_{2}^{\prime}\right)\left(K_{1}-K_{2}\right)^{2} \\
& -\left(K_{1}-K_{2}\right)^{2}\left(\dot{a_{1}^{*}} \frac{d s^{*}}{d s}\left(K_{1}-K_{2}\right)+a_{1}^{*}\left(K_{1}^{\prime}-K_{2}^{\prime}\right)\right) \\
\rho= & a_{1}^{*} K_{2}\left(K_{1}-K_{2}\right)^{3}
\end{aligned}\right.
$$

Hence, we can write the followings after some calculations:

$$
\begin{aligned}
\dot{\bar{\xi}}_{1}^{*}= & \frac{d \bar{\xi}_{1}^{*}}{d s^{*}} \\
= & \frac{\sqrt{2}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right)}{\left(a_{1}^{*}\right)^{2}\left(K_{1}-K_{2}\right)^{4}}+\left(\frac{a_{2}^{*} K_{1}^{*}}{a_{1}^{*}}\right) \bar{\xi}_{1}^{*}-\left(\frac{\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \bar{\xi}_{2}^{*} \\
& -\left(\frac{\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \bar{\xi}_{3}^{*} .
\end{aligned}
$$

Also, we have the K_{1}^{*}-curvature of the $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curve as follows:

$$
K_{1}^{*}=\left\|\frac{d \bar{\xi}_{1}^{*}}{d s^{*}}\right\|=\frac{\psi}{\left(a_{1}^{*}\right)^{2}\left(K_{1}-K_{2}\right)^{4}},
$$

where

$$
\psi=\sqrt{2\left(\mu^{2}+\eta^{2}+\rho^{2}\right)+\left(\begin{array}{l}
\left(a_{1}^{*} a_{2}^{*} K_{1}^{*}\right)^{2} \\
+\left(\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right)^{2} \\
+\left(\dot{\left.a_{3}^{*} a_{1}^{*}-\dot{a_{1}^{*}} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right)^{2}}\right.
\end{array}\right)\left(K_{1}-K_{2}\right)^{8}}
$$

Additionally, the versor field $\bar{\xi}_{2}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curve is given as:

$$
\begin{aligned}
& \sqrt{2}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right) \\
\bar{\xi}_{2}^{*}= & \frac{+\left(\begin{array}{l}
a_{1}^{*} a_{2}^{*} K_{1}^{*} \bar{\xi}_{1}^{*} \\
-\left(\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right) \bar{\xi}_{2}^{*} \\
-\left(\dot{a}_{3}^{*} a_{1}^{*}-{\left.\dot{a_{1}^{*}} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right) \bar{\xi}_{3}^{*}}^{*}\right.
\end{array}\right)\left(K_{1}-K_{2}\right)^{4}}{\psi}
\end{aligned}
$$

The versor field $\bar{\xi}_{3}^{*}=\bar{\xi}_{1}^{*} \times \bar{\xi}_{2}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curve is presented as:

$$
\left.\left.\begin{array}{rl}
\bar{\xi}_{3}^{*}= & \frac{\sqrt{2}\left(K_{1}-K_{2}\right)\left(\rho \bar{\xi}_{1}-\mu \bar{\xi}_{3}\right)}{\psi a_{1}^{*} \sqrt{K_{1}-K_{2}}{ }^{2}} \\
& +\frac{\left(K_{1}-K_{2}\right)^{4}}{\psi}\left[\binom{\left(\frac{a_{2}^{*}}{a_{1}^{*}}\right)\left(\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right)}{-\frac{a_{3}^{*}}{a_{1}^{*}}\left(\dot{a}_{2}^{*} a_{1}^{*}-a_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right)} \bar{\xi}_{1}^{*}\right] \\
-a_{2}^{*} a_{3}^{*} K_{1}^{*} \bar{\xi}_{2}^{*}+\left(a_{2}^{*}\right)^{2} K_{1}^{*} \bar{\xi}_{3}^{*}
\end{array}\right]\right] .\left[\begin{array}{l}
\frac{\left(K_{1}-K_{2}\right) \bar{\xi}_{2}}{\left.a_{1}^{*} \sqrt{\left(K_{1}-K_{2}\right)^{2}}\right)} \\
\\
\end{array}\right.
$$

and also the K_{2}^{*}-torsion of the $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curve can be calculated as $K_{2}^{*}=-\frac{\dot{\bar{\xi}}_{3}^{*}}{\overline{\bar{\xi}}_{2}^{*}}$.

Special Case 3.4. Due to the geometry of versor fields along a curve with Myller configuration in Euclidean 3-space E_{3} is a generalization of the usual theory of curves in E_{3}, we can write the following special case:

- If we take $a_{1}=a_{1}^{*}=1, a_{2}=a_{2}^{*}=a_{3}=a_{3}^{*}=0$ in the written equations in this subsection for $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curves with Frenet-type frame in Myller configuration for E_{3}, then we have the $T B$-Smarandache curves with Frenet frame in E_{3} (see [1, 7, 12]).

3.3. Generalized $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curves

Definition 3.5. Let $\bar{r}: I \rightarrow E_{3}$ for the arc-length parameter $s \in I$ be a regular curve with the Frenet-type frame $\mathcal{R}_{F}=\left\{\bar{\xi}_{1}, \bar{\xi}_{2}, \bar{\xi}_{3}, K_{1}, K_{2}\right\}$ in Myller configuration for Euclidean 3-space E_{3}. The curve $\bar{r}_{3}^{*}: J \rightarrow E_{3}$ for the arclength parameter $s^{*} \in J$ is determined as follows:

$$
\begin{equation*}
\bar{r}_{3}^{*}=\frac{1}{\sqrt{2}}\left(\bar{\xi}_{1}+\bar{\xi}_{2}+\bar{\xi}_{3}\right) \tag{11}
\end{equation*}
$$

which is called $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curve.
Let us examine the invariants of the Frenet-type frame in Myller configuration for $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curves according to the curve \bar{r}. Differentiating
the equation (11) related to the parameter s, we get:

$$
\begin{equation*}
\left(\bar{r}_{3}^{*}\right)^{\prime}=\frac{d \bar{r}_{3}^{*}}{d s^{*}} \frac{d s^{*}}{d s}=\frac{1}{\sqrt{3}}\left(\bar{\xi}_{1}^{\prime}+\bar{\xi}_{2}^{\prime}+\bar{\xi}_{3}^{\prime}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a_{1}^{*} \bar{\xi}_{1}^{*}+a_{2}^{*} \bar{\xi}_{2}^{*}+a_{3}^{*} \overline{\bar{\xi}}_{3}^{*}\right) \frac{d s^{*}}{d s}=\frac{1}{\sqrt{3}}\left(-K_{1} \bar{\xi}_{1}+\left(K_{1}-K_{2}\right) \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}\right) \tag{13}
\end{equation*}
$$

where

$$
\frac{d s^{*}}{d s}=\sqrt{\frac{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}{3}}
$$

By means of the equations (12) and (13), we can obtain:

$$
a_{1}^{*} \bar{\xi}_{1}^{*}+a_{2}^{*} \bar{\xi}_{2}^{*}+a_{3}^{*} \bar{\xi}_{3}^{*}=\frac{-K_{1} \bar{\xi}_{1}+\left(K_{1}-K_{2}\right) \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}}
$$

and we have

$$
\left\{\begin{array}{l}
a_{1}^{*}=\left\langle\frac{-K_{1} \bar{\xi}_{1}+\left(K_{1}-K_{2}\right) \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}}, \bar{\xi}_{1}^{*}\right\rangle \\
a_{2}^{*}=\left\langle\frac{-K_{1} \bar{\xi}_{1}+\left(K_{1}-K_{2}\right) \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}}, \bar{\xi}_{2}^{*}\right\rangle \\
a_{3}^{*}=\left\langle\frac{-K_{1} \bar{\xi}_{1}+\left(K_{1}-K_{2}\right) \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{\sqrt{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}}, \bar{\xi}_{3}^{*}\right\rangle
\end{array}\right.
$$

In that case, we get the versor field $\bar{\xi}_{1}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curve as follows:

$$
\begin{equation*}
\bar{\xi}_{1}^{*}=\frac{-K_{1} \bar{\xi}_{1}+\left(K_{1}-K_{2}\right) \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{a_{1}^{*} \sqrt{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}}-\frac{a_{2}^{*}}{a_{1}^{*}} \bar{\xi}_{2}^{*}-\frac{a_{3}^{*}}{a_{1}^{*}} \bar{\xi}_{3}^{*} \tag{14}
\end{equation*}
$$

where $a_{1}^{*} \neq 0$. By taking the derivative of the equation (14) according to the parameter s, we get:

$$
\begin{aligned}
\frac{d \bar{\xi}_{1}^{*}}{d s} & =\frac{d \bar{\xi}_{1}^{*}}{d s^{*}} \frac{d s^{*}}{d s} \\
& =\bar{\xi}_{1}^{*} \frac{d s^{*}}{d s} \\
& =\frac{\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}}{\left(a_{1}^{*}\right)^{2}\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right)^{3 / 2}}-\left(\frac{\dot{a_{2}^{*}} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{2}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{a_{2}^{*}}{a_{1}^{*}}\left(-K_{1}^{*} \bar{\xi}_{1}^{*}+K_{2}^{*} \bar{\xi}_{3}^{*}\right) \frac{d s^{*}}{d s}-\left(\frac{\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{3}^{*} \\
& +\left(\frac{a_{3}^{*} K_{2}^{*}}{a_{1}^{*}}\right) \frac{d s^{*}}{d s} \bar{\xi}_{2}^{*}
\end{aligned}
$$

where

$$
\left\{\begin{aligned}
\mu= & a_{1}^{*}\left(-K_{1}^{\prime}+K_{1}\left(K_{2}-K_{1}\right)\right)\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right) \\
& +K_{1}\left[\begin{array}{l}
\dot{a_{1}^{*}} \frac{d s^{*}}{d s}\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right) \\
+a_{1}^{*}\left(K_{1} K_{1}^{\prime}+\left(K_{1}-K_{2}\right)\left(K_{1}^{\prime}-K_{2}^{\prime}\right)+K_{2} K_{2}^{\prime}\right)
\end{array}\right] \\
\eta= & a_{1}^{*}\left(-K_{1}^{2}+K_{1}^{\prime}-K_{2}^{\prime}-K_{2}^{2}\right)\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right) \\
& -\left(K_{1}-K_{2}\right)\left[\begin{array}{l}
\dot{a_{1}^{*}} \frac{d s^{*}}{d s}\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right) \\
+a_{1}^{*}\left(K_{1} K_{1}^{\prime}+\left(K_{1}-K_{2}\right)\left(K_{1}^{\prime}-K_{2}^{\prime}\right)+K_{2} K_{2}^{\prime}\right)
\end{array}\right] \\
\rho= & a_{1}^{*}\left(K_{2}^{\prime}+K_{2}\left(K_{1}-K_{2}\right)\right)\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right) \\
& -K_{2}\left[\begin{array}{l}
\dot{a_{1}^{*}} \frac{d s^{*}}{d s}\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right) \\
+a_{1}^{*}\left(K_{1} K_{1}^{\prime}+\left(K_{1}-K_{2}\right)\left(K_{1}^{\prime}-K_{2}^{\prime}\right)+K_{2} K_{2}^{\prime}\right)
\end{array}\right]
\end{aligned}\right.
$$

After that, we have the following:

$$
\begin{aligned}
\dot{\bar{\xi}}_{1}^{*}= & \frac{d \bar{\xi}_{1}^{*}}{d s^{*}} \\
= & \frac{\sqrt{3}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right)}{\left(a_{1}^{*}\right)^{2}\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right)^{2}}+\left(\frac{a_{2}^{*} K_{1}^{*}}{a_{1}^{*}}\right) \bar{\xi}_{1}^{*}-\left(\frac{\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \bar{\xi}_{2}^{*} \\
& -\left(\frac{\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}}{\left(a_{1}^{*}\right)^{2}}\right) \bar{\xi}_{3}^{*} .
\end{aligned}
$$

Then, we get the K_{1}^{*}-curvature of the $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curve as follows:

$$
K_{1}^{*}=\left\|\frac{d \bar{\xi}_{1}^{*}}{d s^{*}}\right\|=\frac{\psi}{\left(a_{1}^{*}\right)^{2}\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right)^{2}}
$$

where

$$
\psi=\sqrt{\begin{array}{l}
3\left(\mu^{2}+\eta^{2}+\rho^{2}\right) \\
+\left(\begin{array}{l}
\left(a_{1}^{*} a_{2}^{*} K_{1}^{*}\right)^{2} \\
+\left(\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right)^{2} \\
+\left(\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right)^{2}
\end{array}\right)\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right)^{4} .
\end{array} . .}
$$

The versor field $\bar{\xi}_{2}^{*}$ of the $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curve is given as:

$$
\begin{aligned}
& \sqrt{3}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right) \\
\bar{\xi}_{2}^{*}= & \frac{+\left(\begin{array}{l}
a_{1}^{*} a_{2}^{*} K_{1}^{*} \bar{\xi}_{1}^{*} \\
-\left(\dot{a}_{2}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right) \bar{\xi}_{2}^{*} \\
-\left(\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right) \bar{\xi}_{3}^{*}
\end{array}\right)\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right)^{2}}{\psi} .
\end{aligned}
$$

In addition to these, the versor field $\bar{\xi}_{3}^{*}=\bar{\xi}_{1}^{*} \times \bar{\xi}_{2}^{*}$ is obtained as:

$$
\begin{aligned}
& \bar{\xi}_{3}^{*}=\frac{\sqrt{3}\left(\left(-K_{2} \eta+\left(K_{1}-K_{2}\right) \rho\right) \bar{\xi}_{1}+\left(K_{1} \rho+K_{2} \mu\right) \bar{\xi}_{2}-\left(\left(K_{1}-K_{2}\right) \mu+K_{1} \eta\right) \bar{\xi}_{3}\right)}{\psi a_{1}^{*} \sqrt{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}} \\
& +\frac{\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right)^{2}}{\psi}\left[\begin{array}{l}
\binom{\frac{a_{2}^{*}}{a_{1}^{*}}\left(\dot{a_{3}^{*}} a_{1}^{*}-\dot{\left.a_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right)}\right.}{-\frac{a_{3}^{*}}{a_{1}^{*}}\left(\dot{a_{2}^{*}} a_{1}^{*}-a_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right)} \bar{\xi}_{1}^{*} \\
-a_{2}^{*} a_{3}^{*} K_{1}^{*} \bar{\xi}_{2}^{*}+\left(a_{2}^{*}\right)^{2} K_{1}^{*} \bar{\xi}_{3}^{*}
\end{array}\right] \\
& +\left[\begin{array}{l}
\left(\begin{array}{l}
\left.\frac{-K_{1} \bar{\xi}_{1}+\left(K_{1}-K_{2}\right) \bar{\xi}_{2}+K_{2} \bar{\xi}_{3}}{a_{1}^{*} \sqrt{K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}}}\right)
\end{array}\right. \\
\times \frac{1}{\psi}\left(\begin{array}{l}
a_{1}^{*} a_{2}^{*} K_{1}^{*} \bar{\xi}_{1}^{*}-\left(\dot{a}_{2}^{*} a_{1}^{*}\right. \\
\left.-\dot{a}_{1}^{*} a_{2}^{*}-a_{1}^{*} a_{3}^{*} K_{2}^{*}\right) \bar{\xi}_{2}^{*} \\
-\left(\dot{a}_{3}^{*} a_{1}^{*}-\dot{a}_{1}^{*} a_{3}^{*}+a_{1}^{*} a_{2}^{*} K_{2}^{*}\right) \bar{\xi}_{3}^{*}
\end{array}\right)\left(K_{1}^{2}+\left(K_{1}-K_{2}\right)^{2}+K_{2}^{2}\right)^{2}
\end{array}\right] \\
& +\left[\left(-\frac{a_{2}^{*}}{a_{1}^{*}} \bar{\xi}_{2}^{*}-\frac{a_{3}^{*}}{a_{1}^{*}} \bar{\xi}_{3}^{*}\right) \times \frac{1}{\psi}\left(\sqrt{3}\left(\mu \bar{\xi}_{1}+\eta \bar{\xi}_{2}+\rho \bar{\xi}_{3}\right)\right)\right] .
\end{aligned}
$$

Then, the K_{2}^{*}-torsion can be given as $K_{2}^{*}\left(s^{*}\right)=-\frac{\bar{\xi}_{3}^{*}}{\bar{\xi}_{2}^{*}}$, as well.
Special Case 3.6. Since the geometry of versor fields along a curve with Myller configuration in Euclidean 3-space E_{3} is a generalization of the usual theory of curves in E_{3}, we have the following special case:

- If we take $a_{1}=a_{1}^{*}=1, a_{2}=a_{2}^{*}=a_{3}=a_{3}^{*}=0$ in the written equations in this subsection for $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curves with Frenet-type frame in Myller configuration for E_{3}, then we have the TNB-Smarandache curves with Frenet frame in E_{3} (see [1, 7, 12]).

Now, let us obtain an illustrative numerical example with respect to the generalized Smarandache curves in Myller configuration. Thanks to the study [27], we construct our example as follows:

Example 3.7. Let us consider the following versor fields and invariants as:

$$
\left\{\begin{array} { l }
{ \overline { \xi } _ { 1 } (s) = (- \frac { 8 } { 1 0 } \operatorname { s i n } s - \operatorname { c o s } s , \frac { 6 } { 1 0 } \operatorname { s i n } s) , } \\
{ \overline { \xi } _ { 2 } (s) = (- \frac { 8 } { 1 0 } \operatorname { c o s } s , \operatorname { s i n } s , \frac { 6 } { 1 0 } \operatorname { c o s } s) , } \\
{ \overline { \xi } _ { 3 } (s) = (- \frac { 6 } { 1 0 } , 0 , - \frac { 8 } { 1 0 }) , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
K_{1}(s)=1 \\
K_{2}(s)=0
\end{array},\right.\right.
$$

and let us choose $a_{1}(s)=\sin s, a_{2}(s)=\cos s, a_{3}(s)=0$, we have:

$$
\begin{equation*}
\bar{r}(s)=\left(-\frac{8 s}{10}, 1, \frac{6 s}{10}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{aligned}
\frac{d \bar{r}}{d s} & =\left(-\frac{8}{10}, 0, \frac{6}{10}\right) \\
& =\sin s\left(-\frac{8}{10} \sin s,-\cos s, \frac{6}{10} \sin s\right)+\cos s\left(-\frac{8}{10} \cos s, \sin s, \frac{6}{10} \cos s\right) \\
& =a_{1} \bar{\xi}_{1}+a_{2} \bar{\xi}_{2} .
\end{aligned}
$$

Let us write the following Smarandache curves as follows:

- $\bar{\xi}_{1} \bar{\xi}_{2}$-Smarandache curve:

$$
\begin{aligned}
\bar{r}_{1}^{*} & =\frac{1}{\sqrt{2}}\left(\bar{\xi}_{1}+\bar{\xi}_{2}\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{-8}{10}(\sin s+\cos s),-\cos s+\sin s, \frac{6}{10}(\sin s+\cos s)\right)
\end{aligned}
$$

- $\bar{\xi}_{1} \bar{\xi}_{3}$-Smarandache curve:

$$
\begin{aligned}
\bar{r}_{2}^{*} & =\frac{1}{\sqrt{2}}\left(\bar{\xi}_{1}+\bar{\xi}_{3}\right) \\
& =\frac{1}{\sqrt{2}}\left(\frac{-8}{10} \sin s-\frac{6}{10} \cos s,-\cos s, \frac{6}{10} \sin s+\frac{8}{10}\right),
\end{aligned}
$$

- $\bar{\xi}_{1} \bar{\xi}_{2} \bar{\xi}_{3}$-Smarandache curve:

$$
\begin{aligned}
\bar{r}_{3}^{*} & =\frac{1}{\sqrt{3}}\left(\bar{\xi}_{1}+\bar{\xi}_{2}+\bar{\xi}_{3}\right) \\
& =\frac{1}{\sqrt{3}}\left(\frac{-8}{10}(\sin s+\cos s)-\frac{6}{10},-\cos s+\sin s, \frac{6}{10}(\sin s+\cos s)-\frac{8}{10}\right) .
\end{aligned}
$$

In the following Figure 1, we can examine the special Smarandache curves with Frenet-type frame in Myller configuration for Euclidean space E_{3} :

Figure 1. The Curve \bar{r} and Some Special Smarandache Curves of \bar{r}

It should be noted that Figure 1 is drawn by Wolfram Mathematica (Wolfram Cloud).

4. Conclusions

In this study, we introduced one of the most important and special curves; namely the Smarandache curves with Frenet-type frame in Myller configuration for E_{3}. We gave also some relations between the Smarandache curves with Frenet-type frame in Myller configuration for E_{3} and Smarandache curves with Frenet frame in E_{3}. Then, we determined the invariants and some special cases. Additionally, we give an example with respect to them to support given materials.

References

[1] A. T. Ali, Special Smarandache curves in the Euclidean space, Int. J. Math. Comb. 2 (2010), 30-36.
[2] Ş. Alıç and B. Yılmaz, Smarandache curves according to alternative frame in \mathbb{E}^{3}, JUM 4 (2021), no. 2, 140-156.
[3] N. Bayrak, Ö. Bektaş, and S. Yüce, Special Smarandache curves in \mathbb{R}_{1}^{3}, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65 (2016), no. 2, 143-160.
[4] Ö. Bektaş and S. Yüce, Special Smarandache curves according to Darboux frame in E^{3}, Rom. J. Math. Comput. Sci. 3 (2013), no. 1, 48-59.
[5] M. Çetin, Y. Tunç, and M. K. Karacan, Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. Math. Notes 20 (2014), no. 2, 50-66.
[6] G. Darboux, Leçons Sur La Thèorie Gènèrale Des Surfaces I-II-III-IV, Gauthier-Villars, Paris, 1896.
[7] N. Demircan, On the Smarandache Curves, Master Thesis, Sinop University, Sinop, Türkiye, 2015.
[8] F. Frenet, Sur les courbes à double courbure, J. Math. Pures Appl. (1852), 437-447.
[9] B. Heroiu, Versor fields along a curve in a four dimensional Lorentz space, J. Adv. Math. Stud. 4 (2011), no. 1, 49-57.
[10] Z. İşbilir and M. Tosun, A new insight on rectifying-type curves in Euclidean-4 space,Int. Electron. J. Geom. 16 (2023), no. 2, 644-652.
[11] Z. İşbilir and M. Tosun, On generalized osculating-type curves in Myller configuration, An. St. Univ. Ovidius Constanta, Ser. Mat. XXXII (2024), no. 2, 13 pages.
[12] F. Karaman, Special Smarandache Curves, Master Thesis, Bilecik Şeyh Edebali University, Bilecik, Türkiye, 2015.
[13] G. Macsim, A. Mihai, and A. Olteanu, On rectifying-type curves in a Myller configuration, Bull. Korean Math. Soc. 56 (2019), no. 2, 383-390.
[14] G. Macsim, A. Mihai, and A. Olteanu, Curves in a Myller configuration, International Conference on Applied and Pure Mathematics (ICAPM 2017), Iaşi, November 2-5, 2017.
[15] G. Macsim, A. Mihai, and A. Olteanu, Special curves in a Myller configuration, Bucharest, May 25, 2019, 78.
[16] R. Miron, The Geometry of Myller Configurations. Applications to Theory of Surfaces and Nonholonomic Manifolds, Romanian Academy, 2010.
[17] R. Miron, Geometria unor configuraţii Myller, Analele Şt. Univ. VI (1960), no. 3.
[18] J. A. Serret, Sur quelques formules relatives à la théorie des courbes à double courbure, J Math Pure Appl 16 (1851), 193-207.
[19] S. Şenyurt and B. Öztürk, Smarandache curves of Salkowski curve according to Frenet frame, Turk. J. Math. Comput. Sci. 10 (2018), 190-201.
[20] S. Şenyurt and B. Öztürk, Smarandache curves of anti-Salkowski curve according to Frenet frame, In Proceedings of the International Conference on Mathematical Studies and Applications (2018), 132-143.
[21] S. Şenyurt and S. Sivas, An application of Smarandache curve, Ordu Univ. J. Sci. Tech. 3 (2013), no. 1, 46-60.
[22] S. Şenyurt and K. Eren, Smarandache curves of spacelike Salkowski curve with a spacelike principal normal according to Frenet frame, Erzincan University Journal of Science and Technology 13 (2020), no. Special Issue-I, 7-17.
[23] S. Şenyurt and K. Eren, Smarandache curves of spacelike anti-Salkowski curve with a timelike principal normal according to Frenet frame, Erzincan University Journal of Science and Technology 13 (2020), no. 2, 404-416.
[24] S. Şenyurt and K. Eren, Smarandache curves of spacelike anti-Salkowski curve with a spacelike principal normal according to Frenet frame, Gümüşhane Üniversitesi Fen Bilimleri Dergisi 10 (2020), no. 1, 251-260.
[25] S. Şenyurt and K. Eren, Some Smarandache curves constructed from a spacelike Salkowski curve with timelike principal normal, Punjab Univ. J. Math. 53 (2021), no. 9, 679-690.
[26] S. Şenyurt, K. H. Ayvacı, and D. Canl, Smarandache curves according to Flc-frame in Euclidean 3-space, Fundamentals of Contemporary Mathematical Sciences 4 (2023), no. 1, 16-30.
[27] E. M. Solouma, Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF, Bull. Math. Anal. Appl. 13 (2021), no. 4, 14-30.
[28] K. Taşköprü and M. Tosun, Smarandache curves according to Sabban frame on S^{2}, Bol. Soc. Paran. Mat. 32 (2014), no. 1, 51-59.
[29] M. Turgut and S. Yılmaz, Smarandache curves in Minkowski space-time, International J. Math. Combin. 3 (2008), 51-55.
[30] S. Yılmaz and Ü. Z. Savcı, Smarandache curves and applications according to type-2 Bishop frame in Euclidean 3-space, Int. J. Math. Comb. 2 (2016), 1-15.

Zehra İşbilir

Department of Mathematics, Düzce University,
Düzce 81620, Türkiye.
E-mail: zehraisbilir@duzce.edu.tr
Murat Tosun
Department of Mathematics, Sakarya University, Sakarya 54187, Türkiye.
E-mail: tosun@sakarya.edu.tr

[^0]: ${ }^{1}$ See for generalization $[9,16]$.

