• 제목/요약/키워드: Free silicon

검색결과 263건 처리시간 0.028초

Advanced Low-k Materials for Cu/Low-k Chips

  • Choi, Chi-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.71-71
    • /
    • 2012
  • As the critical dimensions of integrated circuits are scaled down, the line width and spacing between the metal interconnects are made smaller. The dielectric film used as insulation between the metal lines contributes to the resistance-capacitance (RC) time constant that governs the device speed. If the RC time delay, cross talk and lowering the power dissipation are to be reduced, the intermetal dielectric (IMD) films should have a low dielectric constant. The introduction of Cu and low-k dielectrics has incrementally improved the situation as compared to the conventional $Al/SiO_2$ technology by reducing both the resistivity and the capacitance between interconnects. Some of the potential candidate materials to be used as an ILD are organic and inorganic precursors such as hydrogensilsequioxane (HSQ), silsesquioxane (SSQ), methylsilsisequioxane (MSQ) and carbon doped silicon oxide (SiOCH), It has been shown that organic functional groups can dramatically decrease dielectric constant by increasing the free volume of films. Recently, various inorganic precursors have been used to prepare the SiOCH films. The k value of the material depends on the number of $CH_3$ groups built into the structure since they lower both polarity and density of the material by steric hindrance, which the replacement of Si-O bonds with Si-$CH_3$ (methyl group) bonds causes bulk porosity due to the formation of nano-sized voids within the silicon oxide matrix. In this talk, we will be introduce some properties of SiOC(-H) thin films deposited with the dimethyldimethoxysilane (DMDMS: $C_4H_{12}O_2Si$) and oxygen as precursors by using plasma-enhanced chemical vapor deposition with and without ultraviolet (UV) irradiation.

  • PDF

Y2O3 첨가 탄소 프리폼에 Si 용융 침투에 의해 제조한 반응 소결 탄화규소 (RBSC Prepared by Si Melt Infiltration into the Y2O3 Added Carbon Preform)

  • 장민호;조경식
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.51-58
    • /
    • 2021
  • The conversion of carbon preforms to dense SiC by liquid infiltration is a prospectively low-cost and reliable method of forming SiC-Si composites with complex shapes and high densities. Si powder was coated on top of a 2.0wt.% Y2O3-added carbon preform, and reaction bonded silicon carbide (RBSC) was prepared by infiltrating molten Si at 1,450℃ for 1-8 h. Reactive sintering of the Y2O3-free carbon preform caused Si to be pushed to one side, thereby forming cracking defects. However, when prepared from the Y2O3-added carbon preform, a SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C → SiC reaction at 1,450℃, 3C and 6H SiC phases, crystalline Si, and Y2O3 were generated based on XRD analysis, without the appearance of graphite. The RBSC prepared from the Y2O3-added carbon preform was densified by increasing the density and decreasing the porosity as the holding time increased at 1,450℃. Dense RBSC, which was reaction sintered at 1,450℃ for 4 h from the 2.0wt.% Y2O3-added carbon preform, had an apparent porosity of 0.11% and a relative density of 96.8%.

탄소가 코팅된 일산화규소(SiO) 음극에서 전해질 첨가제로서 Lithium Bis(oxalato)borate의 영향 (Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode)

  • 김건우;이재길;박호상;김종정;류지헌;김영욱;오승모
    • 전기화학회지
    • /
    • 제17권1호
    • /
    • pp.49-56
    • /
    • 2014
  • 탄소가 코팅된 일산화규소(C-coated SiO) 전극에서 전해질 첨가제로서 lithium bis(oxalato)borate(LiBOB)의 영향을 조사하였다. 전해질 조성은 1.3M $LiPF_6$/ethylene carbonate (EC), fluoroethylene carbonate (FEC), diethyl carbonate (DEC) (5:25:70 v/v/v)이며, 여기에 LiBOB을 0.5 wt.% 첨가한 것과 첨가하지 않은 2가지 전해질을 사용하였다. LiBOB을 첨가하지 않은 전해질에서 C-coated SiO 전극은 초기에 저항이 작은 피막이 형성되어 결정질의 $Li_{15}Si_4$를 형성할 때까지 합금화가 진행되며 동시에 큰 부피 변화를 보였다. 따라서 입자의 균열이 발생하고, 전극의 저항이 증가하여 충방전이 진행됨에 따라 용량이 빠르게 감소하였다. 반면에 LiBOB이 첨가된 전해질에서는 초기에 LiBOB의 환원분해에 의해 저항이 큰 피막이 형성되어, 합금화 반응이 원활히 진행되지 못하였다. 따라서 결정질 $Li_{15}Si_4$도 생성되지 못하였고, 결과적으로 부피변화도 적게 발생하므로 입자의 균열과 전극 저항의 증가도 적게 나타났다. 이러한 효과로 싸이클 후반부에서 용량감소가 적었고, 싸이클 성능도 좋은 결과를 보였다. 반면 피막 저항에 의한 영향이 줄어드는 $45^{\circ}C$ 에서는 LiBOB 첨가에 관계없이 합금화 반응이 유사하게 진행되며 비슷한 싸이클 성능을 나타내었다.

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권9호
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

Characterization of SiC/C Nanocomposite Powders Synthesized by Arc-Discharge

  • Zhou, Lei;Yu, Jie Yi;Gao, Jian;Wang, Dong Xing;Gan, Xiao Rong;Xue, Fang Hong;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.242-248
    • /
    • 2015
  • In this paper, three carbon sources, i.e., solid graphite, gaseous CH4 and liquid ethanol, and one solid silicon source were employed to synthesize SiC/C nanocomposite powders by arc-discharge plasma. The processing conditions such as the component ratios of raw materials, atmospheric gases, etc. were adjusted for controllable synthesis of the nanopowders. It is indicated that both of solid graphite and silicon can be co-evaporated and reacted to form nanophases of cubic ${\beta}$-SiC with ~50 nm in mean size and a little free graphite; the carbon atoms decomposed from gaseous $CH_4$ favor to combine with the evaporated silicon atoms to form the dominant SiC nanophase; liquid carbon source of ethanol can also be used to harvest the main ${\beta}$-SiC and minor 6H-SiC phases in the assembly of nanoparticles. The as-prepared SiC/C nanocomposite powders were further purified by a heat-treatment in air and their photocatalytic performances were then greatly improved.

Characterization of SiC nanowire synthesize by Thermal CVD

  • 정민욱;김민국;송우석;정대성;최원철;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

고전압 집적회로를 위한 래치업-프리 구조의 HBM 12kV ESD 보호회로 (A 12-kV HBM ESD Power Clamp Circuit with Latchup-Free Design for High-Voltage Integrated Circuits)

  • 박재영;송종규;장창수;김산홍;정원영;김택수
    • 대한전자공학회논문지SD
    • /
    • 제46권1호
    • /
    • pp.1-6
    • /
    • 2009
  • 고전압 소자에서 스냅백 이후의 유지 전압은 구동전압에 비해 매우 작아서 고전압 MOSFET이 ESD(ElecroStatic Discharge) 파워클램프로 바로 사용될 경우 래치업 문제를 일으킬 수 있다. 본 연구에서는 스택 바이폴라 소자를 이용하여 래치업 문제가 일어나지 않는 구조를 제안하였다. 제안된 구조에서는 유지 전압이 구동전압 보다 높으므로 래치업 문제가 발생하지 않으면서, 기존의 다이오드를 사용한 고전압 파워클램프에 비해 면적이 작으며, 내구성 측면에서 800% 성능향상이 있게 되었다. 제안된 구조는 $0.35{\mu}m$ 60V BCD(Bipolar-CMOS-DMOS) 공정을 사용하여 제작되었으며, TLP(Transmission Line Pulse) 장비로 웨이퍼-레벨 측정을 하였다.

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I) (Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I))

  • 김대연;강계원;최병호
    • 한국재료학회지
    • /
    • 제10권7호
    • /
    • pp.459-463
    • /
    • 2000
  • 순수한 동적 결합반응이고 전하 누적이 없는 이온 임플란테이션, 새로운 재료 개발 등에 음이온을 직접 사용하는 새로운 연구가 진행되고 있으며, 이러한 관점에서 새로운 고체상의 Cs이온 법이 실험실 규모로 연구되고 있다. 본 논문에서는 음이온 Cs gun으로 DLC 박막을 실리콘 위에 제조하였다. 이 시스템은 가스가 필요없으므로, 고 진공에서 증착이 일어난다. C(sup)-빔 에너지는 80~150eV 사이에서 조절이 우수하였다. Raman 분석결과 박막의 DLC 지수, 즉$sp^3$비율은 이온 에너지 증가에 따라 증가하였으며, 미소 경도값 또한 7에서 14GPa로 증가하였다. DLC박막의 표면 평균거칠기(Ra)는 ~1$\AA$정도로 아주 매끈하였으며, 불순물이 내재되지 않는 박막을 얻을 수 있었다.

  • PDF

3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향 (Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging)

  • 최은혜;이연승;나사균
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.374-378
    • /
    • 2012
  • In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.