DOI QR코드

DOI QR Code

RBSC Prepared by Si Melt Infiltration into the Y2O3 Added Carbon Preform

Y2O3 첨가 탄소 프리폼에 Si 용융 침투에 의해 제조한 반응 소결 탄화규소

  • Jang, Min-Ho (Department of Advanced Materials Science & Engineering, Kumoh National Institute of Technology) ;
  • Cho, Kyeong-Sik (Department of Advanced Materials Science & Engineering, Kumoh National Institute of Technology)
  • Received : 2021.02.14
  • Accepted : 2021.02.23
  • Published : 2021.02.28

Abstract

The conversion of carbon preforms to dense SiC by liquid infiltration is a prospectively low-cost and reliable method of forming SiC-Si composites with complex shapes and high densities. Si powder was coated on top of a 2.0wt.% Y2O3-added carbon preform, and reaction bonded silicon carbide (RBSC) was prepared by infiltrating molten Si at 1,450℃ for 1-8 h. Reactive sintering of the Y2O3-free carbon preform caused Si to be pushed to one side, thereby forming cracking defects. However, when prepared from the Y2O3-added carbon preform, a SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C → SiC reaction at 1,450℃, 3C and 6H SiC phases, crystalline Si, and Y2O3 were generated based on XRD analysis, without the appearance of graphite. The RBSC prepared from the Y2O3-added carbon preform was densified by increasing the density and decreasing the porosity as the holding time increased at 1,450℃. Dense RBSC, which was reaction sintered at 1,450℃ for 4 h from the 2.0wt.% Y2O3-added carbon preform, had an apparent porosity of 0.11% and a relative density of 96.8%.

Keywords

References

  1. M. Bougoin: SiC Material and Technology for Space Optics, G. Otrio (Ed.), International Conference on Space Optics-ICSO 2000, Vol. 10569, Toulouse Labege, France (2000) 105691U.
  2. K. Tsuno, H. Irikado, K. Hamada, O. Kazuhiko, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto and Y. Dai: Reaction-Sintered Silicon Carbide: Newly Developed Material for Lightweight Mirrors, J. Costeraste and E. Armandillo (Ed.), International Conference on Space Optics-ICSO 2004, Vol. 10568, Toulouse, France (2004) 105681F.
  3. Y. Zhang, J. Zhang, J. Han, X. He and W. Yao: Mater. Lett., 58 (2004) 1204. https://doi.org/10.1016/j.matlet.2003.09.010
  4. K. Tsuno, H. Irikado, K. Oono, S. Suyama and Y. Itoh: NTSiC (New Technology SiC): The Progress of Recent Two Years, Proc. 6th Inter. Conf. on Space Optics, Noordwijk, Netherlands (2006) ESASP-621.
  5. L. E. Matson, M. Y. Chen and B. deBlonk: Silicon Carbide Technologies for Lightweight Aerospace Mirrors, 2008 Advances Maui Optical and Space Surveillance Technologies Conference, Maui, Hi (2008).
  6. M. Kotani, Y. Muta, A. Yoshimura, S. Ogihara, T. Imai, H. Katayama, Y. Yui, Y. Tange, K. Enya, H. Kaneda and T. Nakagawa: J. Mater. Eng. and Perform., 23 (2014) 850. https://doi.org/10.1007/s11665-013-0827-1
  7. I.-S. Han, J.-H. Yang and D.-S. Suhr: J. Kor. Ceram. Soc., 30 (1993) 69.
  8. K.-S. Seo, S.-W. Park, J.-W. Ha and Y.-J. Chung: J. Kor. Ceram. Soc., 35 (1998) 626.
  9. K. S. Seo, S. W. Park and H. S. Song: J. Kor. Ceram. Soc., 36 (1999) 655.
  10. G.-S. Cho, G.-M. Kim and S.-W. Park: J. Kor. Ceram. Soc., 46 (2009) 534. https://doi.org/10.4191/KCERS.2009.46.5.534
  11. C.-S. Kwon, Y.-S. Oh, S.-M. Lee, Y. Han, H.-I. Shina , Y. Kim and S. Kim: J. Korean Powder Metall. Inst., 21 (2014) 467. https://doi.org/10.4150/KPMI.2014.21.6.467
  12. B. L. Wing, F. Esmonde-White and J. W. Halloran: J. Am. Ceram. Soc., 99 (2016) 3705. https://doi.org/10.1111/jace.14398
  13. N.-L. Zhang, J.-F. Yang, Y.-C. Deng, B. Wang and P. Yin: Ceram. Inter., 45 (2019) 15715. https://doi.org/10.1016/j.ceramint.2019.04.224
  14. S. Songa, B. Lua, Z. Gaob, C. Baoc and Y. Ma: Ceram. Inter., 45 (2019) 17987. https://doi.org/10.1016/j.ceramint.2019.06.017
  15. P. Sangsuwan, J. A. Orejas, J. E. Gatica, S. N. Tewari and M. Singh: Ind. Eng. Chem. Res., 40 (2001) 5191. https://doi.org/10.1021/ie001029e
  16. Y. Wang, S. Tan and D. Jiang: Carbon, 42 (2004) 1833. https://doi.org/10.1016/j.carbon.2004.03.018
  17. Z. F. Chen, Y. C. Su and Y. B. Cheng: Key Eng. Mater., 352 (2007) 207. https://doi.org/10.4028/www.scientific.net/KEM.352.207
  18. J. C. Margiotta, D. Zhang, D. C. Nagle and C. E. Feeser: J. Mater. Res., 23 (2008) 1237. https://doi.org/10.1557/jmr.2008.0167
  19. X. Zhou, D. Liu, H. Bu, L. Deng, H. Liu, P. Yuan, P. Du and H. Song: Solid Earth Sci., 3 (2018) 16. https://doi.org/10.1016/j.sesci.2017.12.002
  20. P. Sangsuwan, S. N. Tewari, J. E. Gatica, M. Singh and R. Dickerson: Metal and Mater. Trans., 30B (1999) 933.
  21. M. Naikadea, B. Fankhanelc, L. Weberb, A. Ortonad, M. Stelterc and T. Graulea: J. Euro. Ceram. Soc., 39 (2019) 735. https://doi.org/10.1016/j.jeurceramsoc.2018.11.049
  22. A. Casado, J. M. Torralba and S. Milenkovic: Metals, 9 (2019) 300. https://doi.org/10.3390/met9030300