References
- Anieuddh M, Brian S, Liu G Q, and Wang L Z (2011) Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. Nano 5, 3483-3492.
- Cai X K, Cong H T, and Liu C (2012) Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 50, 2726-2730. https://doi.org/10.1016/j.carbon.2012.02.031
- Dong X L, Zhang Z D, Zhao X G, and Chuang Y C (1999) The preparation and characterization of ultrafine Fe -Ni particles. J. Mater. Res. 14, 398-406. https://doi.org/10.1557/JMR.1999.0058
- Fujishima A and Honga K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38. https://doi.org/10.1038/238037a0
- Georg W and Josef K (2005) Photocurrents and degradation rates on particulate TiO2 layers effect of layer thickness, concentration of oxidizable substance and illumination direction. Electrochimica Acta 50, 4498-4504. https://doi.org/10.1016/j.electacta.2005.02.028
- George H, Kazuyoshi K, Kazuki N, and Teiichi H (2010) A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels. Chem. Mater. 22, 2541-2547. https://doi.org/10.1021/cm9034616
- Guo G F, Huang H, Xue F H, Liu C J, Yu H T, Quan X, and Dong X L (2013) Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method. Surf. Coat. Technol. 228, 120-125. https://doi.org/10.1016/j.surfcoat.2012.07.016
- Isaias J R, Edgar M, Leticia M, Torres M, and Christian G S (2013) Short time deposition of TiO2 nanoparticles on SiC as photocatalysts for the degradation of organic dyes. Res. Chem. Inter. 39, 1523-1531. https://doi.org/10.1007/s11164-012-0617-7
- Kang M G, Han H E, and Kim K J (1999) Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. J. Photochem. Photobiol. A 125, 119-125. https://doi.org/10.1016/S1010-6030(99)00092-1
- Kang Z H, Cha T A, Wong N B, and Zhang Z D (2007) Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. Am. Chem. Soc. 129, 12090-12091. https://doi.org/10.1021/ja075184x
- Kang Z, Liu Y, Tsang C, Fan X, and Wong N B (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21, 661-664. https://doi.org/10.1002/adma.200801642
- Kim H Y, Bae S Y, Kim N S, and Park J (2003) Fabrication of SiC-C coaxial nanocables: thickness control of C outer layers. Chem. Comm. 20, 2634-2635.
- Lei J P, Huang H, Dong X L, Sun J P, and Lua B (2009) Formation and hydrogen storage properties of in situ prepared Mg-Cu alloy nanoparticles by arc discharge. Int. J. Hydrogen Energy 34, 8127-8134. https://doi.org/10.1016/j.ijhydene.2009.07.092
- Liu H L, She G W, Mu L X, and Shi W S (2012) Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater. Res. Bull. 47, 917-920. https://doi.org/10.1016/j.materresbull.2011.12.046
- Liu Y S, Ji G B, and Wang J Y (2012) Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration. Nanoscale Res. Lett. 7, 663. https://doi.org/10.1186/1556-276X-7-663
- Nacera M, Yannick C, Sabine S, Toufi k H, Omar E, and Rabah B (2011) Photocatalytic activity of silicon nanowires under UV and visible light irradiation. Chem. Commun. 47, 991-993. https://doi.org/10.1039/C0CC04250A
- Nariki Y, Inoue Y, and Tanaka K (1990) Production of ultra fine SiC powder from SiC bulk by arc-plasma irradiation under different atmospheres and its application to photocatalysts. J. Mater. Sci. 25, 3101-3104. https://doi.org/10.1007/BF00587657
-
Nicolas K, Valerie R, Francois G, and Marc J L (2004) A new TiO2-
${\beta}$ -SiC material for use as photocatalyst. Mat. Lett. 58, 970-974. https://doi.org/10.1016/j.matlet.2003.08.009 - Noboru O, Tatsuo F, Masakazu K, Takashi A, and Hirokatsu Y (2002) Growth of large high-quality SiC single crystals. J. Crystal Growth 237, 1180-1186.
- Pan X, Zhao Y, Liu S,Carol L K, Wang S, and Fan Z Y (2012) Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. Mater. Interf. 4, 3944-3950. https://doi.org/10.1021/am300772t
- Saber A, Rasul M G, Wayde N M, Bromn R, and Hashib M A (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261, 3-18. https://doi.org/10.1016/j.desal.2010.04.062
- Shao M, Cheng L, and Zhang X (2009) Excellent photocatalysis of HF-treated silicon nanowires. J. Am. Chem. Soc. 131, 17738-17739. https://doi.org/10.1021/ja908085c
- Yu H T, Quan X, Chen S, Zhao H M, and Zhang Y B (2008) TiO2-carbon nanotube heterojunction arrays with a controllable thickness of TiO2 layer and their first application in photocatalysis. J. Photochem. Photobiol. A: Chem. 200, 301-306. https://doi.org/10.1016/j.jphotochem.2008.08.007
- Zhou W M, Yan L J, and Wang Y (2006) SiC nanowires: a photocatalytic nanomaterial. Appl. Phy. Lett. 89, 13105-1-3. https://doi.org/10.1063/1.2219139
- Zhu K X, Guo L W, and Lin J J (2012) Graphene covered SiC powder as advanced photocatalytic material. Phy. Lett. 100, 023113-1-023113-4.
- Zhu K X L, Guo W, and Lin J J (2012) Graphene covered SiC powder as advanced photocatalytic material. Phy. Lett. 100, 023113(1-4).