Browse > Article
http://dx.doi.org/10.5229/JKES.2013.17.1.49

Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode  

Kim, Kun Woo (Technology team, Samsung SDI Co., Ltd.)
Lee, Jae Gil (Department of Chemical and Biological Engineering, Seoul National University)
Park, Hosang (Department of Chemical and Biological Engineering, Seoul National University)
Kim, Jongjung (Department of Chemical and Biological Engineering, Seoul National University)
Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Kim, Young-Ugk (Energy 1-Lab., Samsung SDI Co. Ltd.)
Oh, Seung M. (Department of Chemical and Biological Engineering, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.1, 2014 , pp. 49-56 More about this Journal
Abstract
As an electrolyte additive, the effects of lithium bis(oxalate)borate (LiBOB) on the electrochemical properties of a carbon-coated silicon monoxide (C-coated SiO) negative electrode are investigated. The used electrolyte is 1.3M $LiPF_6$ that is dissolved in ethylene carbonate (EC), fluoroethylene carbonate (FEC), and diethyl carbonate (DEC) (5:25:70 v/v/v) with or without 0.5 wt. % LiBOB. In the LiBOB-free electrolyte, the film resistance is not so high in the initial period of cycling that lithiation is facilitated to generate the crystalline $Li_{15}Si_4$ phase. Due to repeated volume change that is caused by such a deep charge/discharge, cracks form in the active material to cause a resistance increase, which eventually leads to capacity fading. When LiBOB is added into the electrolyte, however, more resistive surface film is generated by decomposition of LiBOB in the initial period. The crystalline $Li_{15}Si_4$ phase does not form, such that the volume change and crack formation are greatly mitigated. Consequently, the C-coated SiO electrode exhibits a better cycle performance in the later cycles. At an elevated temperature ($45^{\circ}C$), wherein the effect of film resistance is less critical, the alloy ($Li_{15}Si_4$ phase) formation is comparable for the LiBOB-free and added cell to give a similar cycle performance.
Keywords
lithium-ion battery; silicon monoxide; surface film; volume change; electrolyte additive;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Dimov, S. Kugino and M. Yoshio, 'Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations' Electrochim. Acta, 48, 1579 (2003).   DOI   ScienceOn
2 H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang, 'A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries' Electrochem. Solid-State Lett., 2, 547 (1999).   DOI
3 M. T. McDowell, S. W. Lee, I. Ryu, H. Wu, W. D. Nix, J. W. Choi and Y. Cui, 'Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes' Nano Lett., 11, 4018 (2011).   DOI   ScienceOn
4 S. Xun, X. Song, M. E. Grass, D. K. Roseguo, Z. Liu, V. S. Battaglia and G. Liu, 'Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application' Electrochem. Solid-State Lett., 14, A61 (2011).   DOI   ScienceOn
5 T. D. Hatchard, J. M. Topple, M. D. Fleischauer and J. R. Dahn, 'Electrochemical Performance of SiAlSn Films Prepared by Combinatorial Sputtering' Electrochem. Solid-State Lett., 6, A129 (2003).   DOI   ScienceOn
6 M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta and M. Shirakata, 'Analysis of SiO Anodes for Lithium-Ion Batteries' J. Electrochem. Soc., 152, A2089 (2005).   DOI   ScienceOn
7 S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo and H.-K. Liu, 'Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries' Angew. Chem. Int. Ed., 45, 6896 (2006).   DOI   ScienceOn
8 D. Mazouzi, B. Lestriez, L. Roue and D. Guyomard, 'Silicon Composite Electrode with High Capacity and Long Cycle Life' Electrochem. Solid-State Lett., 12, A215 (2009).   DOI   ScienceOn
9 B. Lestriez, S. Bahri, I. Sandu, L. Roue and D. Guyomard, 'On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries' Electrochem. Commun., 9, 2801 (2007).   DOI   ScienceOn
10 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov and G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid' ACS Appl. Mater. Inter., 2, 3004 (2010).   DOI   ScienceOn
11 S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui and K. Konno, 'Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries' The Journal of Physical Chemistry C, 115, 13487 (2011).   DOI   ScienceOn
12 I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, 'A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries' Science, 334, 75 (2011).   DOI   ScienceOn
13 J.-W. Song, C. C. Nguyen and S.-W. Song, 'Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries' RSC Advances, 2, 2003 (2012).   DOI   ScienceOn
14 N.-S. Choi, K. H. Yew, H. Kim, S.-S. Kim and W.-U. Choi, 'Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte' J. Power Sources, 172, 404 (2007).   DOI   ScienceOn
15 J.-H. Kim, C.-M. Park, H. Kim, Y.-J. Kim and H.-J. Sohn, 'Electrochemical behavior of SiO anode for Li secondary batteries' J. Electroanal. Chem., 661, 245 (2011).   DOI   ScienceOn
16 G.-B. Han, M.-H. Ryou, K. Y. Cho, Y. M. Lee and J.-K. Park, 'Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thinfilm electrode' J. Power Sources, 195, 3709 (2010).   DOI   ScienceOn
17 V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching and D. Aurbach, 'Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes' Langmuir, 28, 965 (2011).
18 T. Kim, S. Park and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode' J. Electrochem. Soc., 154, A1112 (2007).   DOI   ScienceOn
19 L. Chen, K. Wang, X. Xie and J. Xie, 'Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries' J. Power Sources, 174, 538 (2007).   DOI   ScienceOn
20 S. Dalavi, P. Guduru and B. L. Lucht, 'Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes' J. Electrochem. Soc., 159, A642 (2012).   DOI
21 D. Aurbach, 'Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries' J. Power Sources, 89, 206 (2000).   DOI   ScienceOn
22 Z. Chen, W. Q. Lu, J. Liu and K. Amine, 'LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries' Electrochim. Acta, 51, 3322 (2006).   DOI
23 M. N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction' Electrochem. Solid-State Lett., 7, A93 (2004).   DOI
24 J.-C. Panitz, U. Wietelmann, M. Wachtler, S. Strobele and M. Wohlfahrt-Mehrens, 'Film formation in LiBOB-containing electrolytes' J. Power Sources, 153, 396 (2006).   DOI
25 D.-T. Shieh, P.-H. Hsieh and M.-H. Yang, 'Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries' J. Power Sources, 174, 663 (2007).   DOI
26 T. D. Hatchard and J. R. Dahn, 'In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon' J. Electrochem. Soc., 151, A838 (2004).   DOI   ScienceOn
27 L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer and J. R. Dahn, 'Reaction of Li with alloy thin films studied by in situ AFM' J. Electrochem. Soc., 150, A1457 (2003).   DOI   ScienceOn
28 J. H. Ryu, J. W. Kim, Y.-E. Sung and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode' Electrochem. Solid-State Lett., 7, A306 (2004).   DOI   ScienceOn
29 J. M. Yan, H. Z. Huang, J. Zhang and Y. Yang, 'The study of Mg2Si/carbon composites as anode materials for lithium ion batteries' J. Power Sources, 175, 547 (2008).   DOI   ScienceOn
30 I. Choi, M. J. Lee, S. M. Oh and J. J. Kim, 'Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM' Electrochim. Acta, 85, 369 (2012).   DOI
31 K. Xu, S. S. Zhang, U. Lee, J. L. Allen and T. R. Jow, 'LiBOB: Is it an alternative salt for lithium ion chemistry?' J. Power Sources, 146, 79 (2005).   DOI   ScienceOn