• Title/Summary/Keyword: Free boundary conditions

Search Result 841, Processing Time 0.044 seconds

Simulation of Nonlinear Water Waves using Boundary Element Method (경계요소법을 이용한 비선형파의 재현)

  • 오영민;이길성;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.204-211
    • /
    • 1993
  • Boundary element method is applied to simulate nonlinear water waves using Green's identity formula in a numerical wave flume. A system of linear equations is formulated from the governing equation and free surface boundary conditions in order to calculate velocity potential and water surface elevation at each nodal point. The velocity square terms are included in the dynamic free surface boundary condition. The free surface is treated as a moving boundary. the vertical variation of velocity potential being considered in calculating the time derivative of the velocity potential at the free surface. The present method is applied to simulate solitary wave and Stokes 2nd order wave, and shows excellent agreements with their theoretical values.

  • PDF

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions: the case that straight and curved boundaries are mixed (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 진동해석 : 직선 및 곡선 경계가 혼합된 경우)

  • Choi, Jang-Hoon;Kang, Sang-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.534-537
    • /
    • 2005
  • Free Vibration Analysis using Non-dimensional Dynamic Influence Function (NDIF) is extended to arbitrarily shaped plates including polygonal plates. Since the corners of polygonal plates have indefinite normal directions and additional boundary conditions related to a twisting moment at a corner along with moment and shear force zero conditions, it is not easy to apply the NDIF method to polygonal plates wi th the free boundary condition. Moreover, owing to the fact that the local polar coordinate system, which has been introduced for free plates with smoothly varying edges, cannot be employed for the straight edges of the polygonal plates, a new coordinate system is required for the polygonal plates. These problems are solved by developing the new method of modifying a corner into a circular arc and setting the normal direction at the corner to an average value of normal direct ions of two edges adjacent to the corner. Some case studies for plates with various shapes show that the proposed method gives credible natural frequencies and mode shapes for various polygons that agree well with those by an exact method or FEM (ANSYS).

  • PDF

Variable Free Surface Panel Method for Potential Flow Analysis around a Ship (가변 자유수면 패널법을 이용한 선체 주위 포텐셜 유동 해석)

  • Choi, Hee-Jong;Kim, Jin;Van, Suak-Ho;Park, Il-Ryong;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • A new solution method was developed to solve the free surface flow around a hull and named as 'Variable Free Surface Panel Method'. In the method the non-linearity of the free surface boundary conditions was fully taken into account and the raised panel method was employed to effectively solve the problem. The transom stern flow was also considered and the panel on the hull was generated using the panel cutting method. Numerical calculations were performed for KCS(KRISO Container Ship) hull form and compared with the experimental data to confirm the validity of the method. The comparison with the conventional free surface panel method was also accomplished. It is confirmed that new method gives more reliable results than the conventional method.

Finite Difference Stability Analysis of Anisotropic Plates with Free Edge (자유경계를 갖는 비등방성 판의 유한차분 안정성 해석)

  • Yoo, Yong Min;Lee, Sang Youl;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.221-230
    • /
    • 2000
  • Checking the stability of anisotropic plates with free edges, it is impossible that buckling loads and modes are found via existing classical methods about various loads and boundary conditions. For solving this problems. finite difference method(FDM) is used to analyze the buckling behaviors for arbitrary boundary conditions. Using FDM, it is difficult to treat the fictitious points on free edges. So, this paper analyzes buckling behaviors of analytic models with one edge free and the other edges clamped and with opposite two edges free and other two edges clamped. The various buckling loads and mode characteristics through numerical results are given for buckling behaviors of anisotropic plates on free edges.

  • PDF

A Study on the Dynamic Behavior of a Various Buried Pipeline (각종 매설관의 동적거동에 관한 연구)

  • Jeong, Jin-Ho;Lim, Chang-Kyu;Joeng, Du-Hwoe;Kook, Seung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.15-24
    • /
    • 2006
  • This work reports the results of our study on the dynamic response of various buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of free vibration. In order to investigate the response on the ground wave, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the forced vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration. The effects of the propagation direction and velocity and the frequency of ground wave on the dynamic responses of concrete, steel, and FRP pipes have been analyzed and then dynamic responses depending on the type of pipes have been compared. Through performing dynamic analyser for various boundary conditions and estimation of the location of maximum strain has been estimated for the type of pipes and boundary conditions.

A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.119-132
    • /
    • 2020
  • In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions. The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume fractions of the constituents. Equations of motion are obtained by employing Hamilton's principle. Numerical results for buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with higher-order shear deformation theories which contain a greater number of unknowns.

Free Vibration of a Thin Plate with Small Deflections by Semi-Analytical Approach (반해석적 방법에 의한 작은 변위를 가지는 얇은판의 자유진동해석)

  • 최덕기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1967-1973
    • /
    • 1994
  • The free vibration of a thin plate with three different boundary conditions is discussed in this paper. A semi-analytical approach to the plate problems has been exploited using computer algebra system(CAS). The approximate solutions are assumed as algebraic polynomials that satisfy the appropriate boundary conditions. In order to solve problems, Galerkin method is used, which is known as an ineffective tool for practical engineering problems, being involved with a large number of multiple integration and differentiation. All the admissible functions used in this paper are generated automatically by CAS otherwise a tedious algebraic manipulations should be done by hand. One, six and fifteen-term solutions in terms of frequency parameters are presented and compared with exact solutions. Even using one-term solution, the comparison with existing data shows good agreement and accuracy of the present method.

Double Fourier Sine Series Method for The Free Vibration of a Rectangular Plate (이중 사인 시리즈법에 의한 직사각형 평판의 자유 진동해석)

  • 윤종욱;이장무
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.771-779
    • /
    • 1996
  • In this paper, double Fourier sine series is used as a modal displacement functions of a rectangular plate and applied to the free vibration analysis of a rectangular plate under various boundary conditions. The method of stationary potential energy is used to obtain the modal displacements of a plate. To enhance the flexibility of the double Fourier sine series, Lagrangian multipliers are utilized to match the geometric boundary conditions, and Stokes' transformation is used to handle the displacements that are not satisfied by the double Fourier sine series. The frequency parameters and mode shapes obtained by the present method are compared with those obtained by MSC/NASTRAN and other analysis.

  • PDF

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

A 3D finite element static and free vibration analysis of magneto-electro-elastic beam

  • Vinyas., M;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.465-485
    • /
    • 2017
  • In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been investigated. To this end, a 3D finite element formulation has been derived by minimization the total potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, different Barium Titanate ($BaTiO_3$) and Cobalt Ferric oxide ($CoFe_2O_4$) volume fractions results in indifferent coupled response. Therefore, through the numerical examples the influence of volume fractions and boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions in the optimum design of MEE structures.