• 제목/요약/키워드: Free Vibration Analysis

검색결과 1,281건 처리시간 0.029초

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.645-658
    • /
    • 2010
  • In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

원판이 결합된 외팔 원통셀의 고유진동 특성해석 (Free Vibration Analysis of Clamped-Free Circular Cylindrical Shells with Plate Attached at Arbitrary Axial Positions)

  • 임정식;이영신;손동성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.237-242
    • /
    • 1996
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial positions was derived and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of plate and shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS as well as modal test in order to validate the formulation. The effects of the thickness and location of the plate were evaluated.

  • PDF

Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets

  • Arefi, M.;Meskini, M.
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.459-467
    • /
    • 2019
  • In this paper, hyperbolic shear deformation theory is used for free vibration analysis of piezoelectric rectangular plate made of porous core. Various types of porosity distributions for the porous material is used. To obtain governing equations of motion, Hamilton's principle is used. The Navier's method is used to obtain numerical results of the problem in terms of significant parameters. One can conclude that free vibration responses are changed significantly with change of important parameters such as various porosities and dimensionless geometric parameters such as thickness to side length ratio and ratio of side lengths.

Influence of the distribution pattern of porosity on the free vibration of functionally graded plates

  • Hadji, Lazreg;Fallah, Ali;Aghdam, Mohammad Mohammadi
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.151-161
    • /
    • 2022
  • In this study, the effect of porosity distribution pattern on the free vibration analysis of porous FG plates with various boundary conditions is studied. The material properties of the plate and the porosities within the plate are considered to vary continuously through the thickness direction according to the volume fraction of constituents defined by the modified rule of the mixture, this includes porosity volume fraction with four different types of porosity distribution over the cross-section. The governing partial differential equation of motion for the free vibration analysis is obtained using hyperbolic shear deformation theory. An analytical solution is presented for the governing PDEs for various boundary conditions. Results of the presented solution are compared and validated by the available results in the literature. Moreover, the effects of material and porosity distribution and geometrical parameters on vibrational properties are investigated.

Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory

  • Gupta, Simmi;Chalak, H.D.
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.483-499
    • /
    • 2022
  • In present work, bending and free vibration studies are carried out on different kinds of sandwich FGM beams using recently proposed (Chakrabarty et al. 2011) C-0 finite element (FE) based higher-order zigzag theory (HOZT). The material gradation is assumed along the thickness direction of the beam. Power-law, exponential-law, and sigmoidal laws (Garg et al 2021c) are used during the present study. Virtual work principle is used for bending solutions and Hamilton's principle is applied for carrying out free vibration analysis as done by Chalak et al. 2014. Stress distribution across the thickness of the beam is also studied in detail. It is observed that the behavior of an unsymmetric beam is different from what is exhibited by a symmetric one. Several new results are also reported which will be useful in future studies.

내부에 길이방향 사각판이 부착된 원통셸의 자유진동 해석 (Free Vibration Analysis of Circular Cylindrical Shells with Longitudinal, Interior Rectangular Plate)

  • 이영신;최명환;류충현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.205-210
    • /
    • 1997
  • The analysis of the free vibrations of a circular cylindrical shell with a logitudinal, interior rectangular plate is performed. The natural frequencies and the mode shapes of the combined shells are experimentally obtained by impact testing using an impact hammer and an accelerometer. The effects of the position of the plate on the frequencies and mode shapes of the combined system are examined. The experimental results are compared with a finite element analysis and show good agreement.

  • PDF

New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores

  • Fard, Keramat Malekzadeh;Livani, Mostafa
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.719-742
    • /
    • 2015
  • This paper dealt the free vibration analysis of thick truncated conical composite sandwich shells with transversely flexible cores and simply supported boundary conditions based on a new improved and enhanced higher order sandwich shell theory. Geometries were used in the present work for the consideration of different radii curvatures of the face sheets and the core was unique. The coupled governing partial differential equations were derived by the Hamilton's principle. The in-plane circumferential and axial stresses of the core were considered in the new enhanced model. The first order shear deformation theory was used for the inner and outer composite face sheets and for the core, a polynomial description of the displacement fields was assumed based on the second Frostig's model. The effects of types of boundary conditions, conical angles, length to radius ratio, core to shell thickness ratio and core radius to shell thickness ratio on the free vibration analysis of truncated conical composite sandwich shells were also studied. Numerical results are presented and compared with the latest results found in literature. Also, the results were validated with those derived by ABAQUS FE code.