Browse > Article
http://dx.doi.org/10.12989/sem.2022.82.2.151

Influence of the distribution pattern of porosity on the free vibration of functionally graded plates  

Hadji, Lazreg (Department of Civil Engineering, University of Tiaret)
Fallah, Ali (Sabanci University Integrated Manufacturing Technologies Research and Application Center)
Aghdam, Mohammad Mohammadi (Mechanical Engineering Department, Amirkabir University of Technology)
Publication Information
Structural Engineering and Mechanics / v.82, no.2, 2022 , pp. 151-161 More about this Journal
Abstract
In this study, the effect of porosity distribution pattern on the free vibration analysis of porous FG plates with various boundary conditions is studied. The material properties of the plate and the porosities within the plate are considered to vary continuously through the thickness direction according to the volume fraction of constituents defined by the modified rule of the mixture, this includes porosity volume fraction with four different types of porosity distribution over the cross-section. The governing partial differential equation of motion for the free vibration analysis is obtained using hyperbolic shear deformation theory. An analytical solution is presented for the governing PDEs for various boundary conditions. Results of the presented solution are compared and validated by the available results in the literature. Moreover, the effects of material and porosity distribution and geometrical parameters on vibrational properties are investigated.
Keywords
free vibration; functionally graded materials; Hamilton's principle; porosity;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Mashat, D.S., Zenkour, A.M. and Radwan, A.F. (2020), "A quasi-3D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity", Eur. J. Mech.-A/Solid., 82, 103985. https://doi.org/10.1016/j.euromechsol.2020.103985.   DOI
2 Abdelhak, Z., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Mater. Res., 4(1), 31. https://doi.org/10.12989/amr.2015.4.4.031.   DOI
3 Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B: Eng., 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.   DOI
4 Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0.   DOI
5 Jahromi, H.N., Aghdam, M.M. and Fallah, A. (2013), "Free vibration analysis of Mindlin plates partially resting on Pasternak foundation", Int. J. Mech. Sci., 75, 1-7. https://doi.org/10.1016/j.ijmecsci.2013.06.001.   DOI
6 Ait Atmane, H., Tounsi, A. and Bernard, F. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.   DOI
7 Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.   DOI
8 Bekki, H., Benfarhat, R. and Hassaine Daouadji, T. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 823-832. https://doi.org/10.12989/sem.2019.72.1.061.   DOI
9 Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191. https://doi.org/10.1007/s00419-012-0645-1.   DOI
10 Hadji, L. and Avcar, M. (2020), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. 10.22055/JACM.2020.35328.2628.   DOI
11 Niknam, H., Fallah, A. and Aghdam, M.M. (2014), "Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading", Int. J. Nonlin. Mech., 65, 141-147. https://doi.org/10.1016/j.ijnonlinmec.2014.05.011.   DOI
12 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.   DOI
13 Chen, D., Yang, J. and Kitipornchai, S. (2019), "Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method", Arch. Civil Mech. Eng., 19(1), 157-170. https://doi.org/10.1016/j.acme.2018.09.004.   DOI
14 Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008.   DOI
15 Hadji, L., Hassaine Daouadji, T., Tounsi, A. and Adda Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507.   DOI
16 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.   DOI
17 Thai, H.T. and Kim, S.E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54(1), 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007.   DOI
18 Pradhan, K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337.   DOI
19 Shimpi, R. and Patel, H. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4-5), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030.   DOI
20 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
21 Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.   DOI
22 Vu, T.V., Nguyen, N.H., Khosravifard, A. and Quoc Bui, T. (2017), "A simple FSDT-based meshfree method for analysis of functionally graded plates", Eng. Anal. Bound. Elem., 79, 1-12. https://doi.org/10.1016/j.enganabound.2017.03.002.   DOI
23 Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. https://doi.org/10.1016/j.compstruct.2018.04.085.   DOI
24 Mantari, J. and Granados, E. (2015), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B: Eng., 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.   DOI
25 Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Mech. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
26 Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.   DOI
27 Li, J.F. (2003), "Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators", J. Am. Ceram. Soc., 86(7), 1094-1098. https://doi.org/10.1111/j.1151-2916.2003.tb03430.x.   DOI
28 Mueller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng.: A, 362(1-2), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1.   DOI
29 Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.   DOI
30 Mechab, I., Ait Atmane, H., Tounsi, A., Belhadj, H.A. and Adda Bedia, E.A. (2010), "A two variable refined plate theory for the bending analysis of functionally graded plates", Acta Mechanica Sinica, 26(6), 941-949. https://doi.org/10.1007/s10409-010-0372-1.   DOI
31 Nguyen, T.K. (2015), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.   DOI
32 Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons Inc.
33 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
34 Thai, H.T. and Choi, D.H. (2013), "Efficient higher-order shear deformation theories for bending and free vibration analyses of functionally graded plates", Arch. Appl. Mech., 83(12), 1755-1771. https://doi.org/10.1007/s00419-013-0776-z.   DOI
35 Talha, M. and Singh, B. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.   DOI
36 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.   DOI
37 Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.   DOI
38 Thai, H.T. and Choi, D.H. (2014), "Levy solution for free vibration analysis of functionally graded plates based on a refined plate theory", KSCE J. Civil Eng., 18, 1813-1824. https://doi.org/10.1007/s12205-014-0409-2.   DOI
39 Uymaz, B. and Aydogdu, M. (2007), "Three-dimensional vibration analyses of functionally graded plates under various boundary conditions", J. Reinf. Plast. Compos., 26(18), 1847-1863. https://doi.org/10.1177/0731684407081351.   DOI
40 Yin, S., Yu, T. and Liu, P. (2013), "Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface", Adv. Mech. Eng., 5, 634584. https://doi.org/10.1155/2013/634584.   DOI
41 Yousfi, M., Ait Atmane, H., Meradjah, M., Tounsi, A. and Bennai, R. (2018), "Free vibration of FGM plates with porosity by a shear deformation theory with four variables", Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/sem.2018.66.3.353.   DOI
42 Nguyen, L.B., Nguyen, N.V., Thai, C.H., Ferreira, A.M.J. and Nguyen-Xuan, H. (2019), "An isogeometric Bezier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets", Compos. Struct., 214, 227-245. https://doi.org/10.1016/j.compstruct.2019.01.077.   DOI
43 Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001.   DOI
44 Shimpi, R. and Patel, H. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(22-23), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007.   DOI
45 Gupta, A. and Talha, M. (2018), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stab. Dyn., 18(01), 1850013. https://doi.org/10.1142/S021945541850013X.   DOI
46 Watari, F., Yokoyama, A., Saso, F., Uo, M. and Kawasaki, T. (1997), "Fabrication and properties of functionally graded dental implant", Compos. Part B: Eng., 28(1-2), 5-11. https://doi.org/10.1016/S1359-8368(96)00021-2.   DOI