• 제목/요약/키워드: Free Force

검색결과 1,227건 처리시간 0.032초

Semi-analytical solutions of free and force vibration behaviors of GRC-FG cylindrical shells

  • Lei, Zuxiang;Tong, Lihong
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.687-699
    • /
    • 2019
  • In this paper, free and force vibration behaviors of graphene-reinforced composite functionally graded (GRC-FG) cylindrical shells in thermal environments are investigated based on Reddy's third-order shear deformation theory (HSDT). The GRC-FG cylindrical shells are composed of piece-wise pattern graphene-reinforced layers which have different volume fraction. Based on the extended Halpin-Tsai micromechanical model, the effective material properties of the resulting nanocomposites are evaluated. Using the Hamilton's principle and the assumed mode method, the motion equation of the GRC-FG cylindrical shells is formulated. Using the time- and frequency-domain methods, free and force vibration properties of the GRC-FG cylindrical shell are analyzed. Numerical cases are provided to study the effects of distribution of graphene, shell radius-to-thickness ratio and temperature changes on the free and force vibration responses of GRC-FG cylindrical shells.

Nonlinear dynamic responses of cracked atomic force microscopes

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.747-756
    • /
    • 2022
  • This study presents the nonlinear free and forced vibrations of a cracked atomic force microscopy (AFM) cantilever by using the modified couple stress. The cracked section of the AFM cantilever is considered and modeled as rotational spring. In the frame work of Euler-Bernoulli beam theory, Von-Karman type of geometric nonlinear equation and the modified couple stress theory, the nonlinear equation of motion for the cracked AFM is derived by Hamilton's principle and then discretized by using the Galerkin's method. The semi-inverse method is utilized for analysis nonlinear free oscillation of the system. Then the method of multiple scale is employed to investigate primary resonance of the system. Some numerical examples are presented to illustrate the effects of some parameters such as depth of the crack, length scale parameter, Tip-Mass, the magnitude and the location of the external excitation force on the nonlinear free and forced vibration behavior of the system.

자유수면 밑을 전진하는 세장체에 작용하는 수면흡입력의 추정 (Free Surface Suction Force Acting on a Submerged Slender Body Moving Beneath a Free Surface)

  • 윤범상;담반퉁
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.688-698
    • /
    • 2009
  • In this paper, the steady lift force acting on a slender body moving beneath regular wave systems of arbitrary wavelengths and directions of propagation is considered. The momentum conservation theorem and the strip method are used to obtain the hydrodynamic forces acting on the body and affecting its motions on the assumption that the body is slender. In order to obtain the vertical steady force acting on it, or the free surface suction force, the second-order hydrodynamic forces caused by mutual interactions between the components of the first-order hydrodynamic forces are averaged over time. The validity of the method is tested by comparison of the calculated results with experimental data and found to be satisfactory. Through some parametric calculations performed for a typical model, some useful results are obtained as to the depth of submergence of the body, wavelengths, directions, etc.

자유단의 스프링 상수와 부가 말단질량이 종동력을 받는 Timoshenko 외팔보의 안정성에 미치는 영향 (Influence of Spring Constant and Tip Mass at Free End on Stability of Timoshenko Cantilever Column subjected to a Follower Force)

  • 손종동
    • 한국안전학회지
    • /
    • 제13권4호
    • /
    • pp.49-58
    • /
    • 1998
  • On the stability of the Timoshenko cantilever column subjected of a compressive follower force, the influences of the moment of inertia of the tip mass at the free end and the characteristics of a translational spring at the free end of the column are studied. The equations of motion and boundary conditions of system are estabilished by using the d'Alembert virtual work of principle. On the evaluation of stability of the column, the effect of the shear deformation and rotatory inertia is considered in calculation. The moment of inertia of the tip mass at the free end of the column is changed by adjusting the distance c, from the free end of the column to the tip mass center. The free end of the column is supported elastically by a translational spring. For the maintenance of the good stability of the column, it is also proved that the constant of the translational spring at the free end must be very large for the case without a tip mass while it must be small for the case with a tip mass. Therefore, it is found that the shape of the tip mass and the characteristic of the spring at the free end are very effective elements for the stability of the column when the columns subjected to a compressive follower force are designed.

  • PDF

자성유체의 자유표면의 변형에 관한 수치해석 (Numerical Analysis on the Deformation of Free Surface of Magnetic Fluid)

  • 남성원;신산신일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.132-137
    • /
    • 1995
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented.

  • PDF

Store Separation Analysis of a Fighter Aircraft's External Fuel Tank

  • Cho, Hwan-Kee;Kang, Chi-Hang;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.345-350
    • /
    • 2010
  • The repetitive vibrating action of an aerodynamic load causes an external fuel tank's horizontal fin to experience a shorter life cycle than its originally predicted one. Store separation analysis is needed to redesign the fin of an external fuel tank. In this research, free-drop tests were conducted using 15% scaled models in a subsonic wind tunnel in order to analyze the store separation characteristics of an external fuel tank. The store separation trajectory based on grid tests was also obtained to verify the results of the free-drop tests. The results acquired from the free-drop tests correlated well with the grid tests in regards to the trajectories and behavior of the stores separated from the aircraft. This agreement was especially noted in the early stages of the store separation.

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구 (A Study on the Two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force)

  • 배형섭;양택주;이육형;주동우;박명관
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.29-37
    • /
    • 2005
  • In this study, the control of the free surface deformation of a magnetic fluid for the change in electromagnetic force is discussed. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. Magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage sealing, oscillator for surface control, boundary layer control, MHD, flow control, flow using magnetic levitation system and surface actuator. This study show the deformation of surface rise due to the intensity of the magnetic field and possibility of two-dimensional control of magnetic fluid through the feedback data of hall sensor.

Force Distribution Algorithms For Singularity-Free 3-DOF Parallel Haptic Device With Redundant Actuation

  • Kim, Tae-Ju;Chung, Goo-Bong;Yi, Byung-Ju;Seo, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1598-1602
    • /
    • 2003
  • The parallel-type mechanism provides more accurate and stiff motion than the serial-type mechanism. However, in case of using the haptic device, the performance of the force reflection can be deteriorated due to the singular points existing in workspace. In this paper, we propose a redundantly actuated parallel 3-DOF haptic device, which is singularity-free in the workspace and has an improved force reflection capability. In addition, we propose a new force distribution algorithm, which can reflect force of both high and low resolution, using two sets of actuator with different size. Redundant actuators are attached to the base frame in order to minimize the inertia of the system. Moreover, a wire and gear reduction system is employed to achieve high force reflection along with soft feeling. We confirm the performance of the force reflection capability throughout simulation.

  • PDF

반발력을 생성하는 햅틱장비를 이용한 가상의 점토 모델링에 관한 연구 (On the Virtual Clay Modeling Using a Force Reflecting Haptic Manipulator)

  • 채영호
    • 한국CDE학회논문집
    • /
    • 제4권1호
    • /
    • pp.12-18
    • /
    • 1999
  • A deformable non-Uniform Rational B-Spline (NURBS) based volume is programed for the force reflecting exoskeleton haptic device. In this work, a direct free form deformation (DFFD) technique is applied for the realistic manipulation. In order to implement the real-time deformation, a nodal mapping technique is used to connect points on the virtual object with the NURBS volume. This geometric modeling technique is ideally incorporated with the force reflecting haptic device as a virtual interface. The results in this work introduce details for the complete set-up for the realistic virtual clay modeling task with force feedback. The force reflecting exoskeleton haptic manipulator, coupled with a supporting PUMA 560 manipulator and the virtual clay model are integrated with the graphics display, and results show that the force feedback from the realistic physically based virtual environment can greately enhance the sense of immersion.

  • PDF