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Abstract

In this paper, the steady lift force acting on a slender body moving beneath regular wave

systems of arbitrary wavelengths and directions of propagation is considered. The

momentum conservation theorem and the strip method are used to obtain the
hydrodynamic forces acting on the body and affecting its motions on the assumption that
the body is slender. In order to obtain the vertical steady force acting on it, or the free

surface suction force, the second-order

hydrodynamic forces caused by mutual

interactions between the components of the first-order hydrodynamic forces are averaged

over time. The validity of the method is tested by comparison of the calculated results

with experimental data and found to be satisfactory.

Through some parametric

calculations performed for a typical model, some useful results are obtained as to the
depth of submergence of the body, wavelengths, directions, etc.

#Keywords: Free surface suction force(=HE 2 &), Second order hydrodynamic force(2 &t &%

M&), Momentum theorem(2S & 2!), Wave-body interaction(It -2 M & S & &), Experimental

validation(& & 2 S)

1. Introduction

Analytical methods have been developed by
various authors to estimate the forces and
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moments acting on a submerged body moving
beneath a free surface. This problem was first
addressed by Ogilvie (1963), who obtained the
second-order vertical force for a two-
dimensional body. Newman (1970) proposed a
basic theory to estimate the second-order
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steady force including two main components
thereof. The first component is caused by
interaction between the wave diffraction and
incident wave potentials, and the second is due
to interaction of the body motions and the
incident waves. A methodology to estimate the
first-order oscillatory motion of the body, the
second-order time—average vertical force and
the pitching moment proposed in terms of
Kochin’s function by Lee & Newman (1971).
However, those studies were restricted to two—
dimensional cases, and no calculated results
were presented.

In the present study, a calculation algorithm
based on a combination of the momentum
conservation theorem and the strip method is
developed to obtain the wave—induced motions
of the body (heave, pitch, sway, yaw and roll).
Using motion responses, the free surface
suction force is calculated and discussed.
Experimental measurements are carried out to
validate the calculation algorithms developed in
the present study. Agreement between the
experimental and calculated results is good
enough to say that the method is valid and
useful. The theory, calculation algorithm, results
and discussions are presented in the following
chapters.

2. Mathematical formulation

2.1 Coordinate systems

As shown in Fig.1, the O-XYZ coordinate
system is fixed in space, the XY plane coinciding
with the undisturbed free surface. G-xyz is a
coordinate system moving at the average
velocity of the body, and its origin G is located
at the mean position of the center of mass of the
body distance h beneath the free surface. The
/- and z—axes are directed vertically upward. An
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incident wave of wavelength A and amplitude A
propagates in the X—direction. The body moves
with velocity U, angle of attack a and wave
encounter angle B.
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Fig. 1 Coordinate systems

As mentioned above, the strip theory is
employed assuming that the body is slender.
The fluid flow is assumed to be incompressible,
inviscid and irrotational, and the motion of the
free surface is very small.

2.2 Force acting on a strip in z—direction

For harmonic wave motions, the velocity
potential of the flow around the strip of the body
located at x = x#*is

O(x*,y,2,0) = Up(x*,,2)+ Relpla*,,2)e™ | (1)
Here, w is the velocity potential at the
coordinate x=x* for the body advancing steadily
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with unit velocity beneath the still water surface.
The second term is the unsteady part due to the
waves and the wave—induced body motions.
That is,
4
2
=0, +0,+ 2 V,p, @
j=2
Here, @, is the potential of the incident wave
written as,
0, = ﬁe-khek(zm‘ cos f-iysin ) (3)
w

where ® is the wave number and

k=

g
w, =w—kUcos is the wave encounter frequency,
@, is the wave diffraction potential, and I, Vs
and V4 are the strip sway, heave and roll
velocities, respectively. @,,®,,@, are the sway,

heave and roll potentials due to the
corresponding motions with unit velocities,

respectively.
As seen in Fig.2, the fluid domain v, is

bounded by the boundaries S; and S,, which are
the boundary at infinity and the body boundary,
respectively. The outward unit normal vector to

the boundary surface is denoted by ﬁ(ny,nz),

and the fluid velocity is denoted by ¥ (v, w).
The fluid momentum equation in the z—direction
is,

d 0 .
fhadl cdy, =— d Ven-dS
7 _‘Upw Vo a5 _‘U‘pw v0+_£pw V-n (4)
:ja_,dS+jjpf;.dvo
S Vo

Considering that
o, =—P. ,przdvo :—ngZ%zdS
Vo K

eq. (4) can be written as
d

M= [P+ pgz)n. + pwv, lis

S, +S.

== [[(P+pgz)n. + poo (@, -U, )lds
5,45, (5)

Furthermore, the boundary
conditions are given on the boundaries S, and
Sc.

following

+=H gd= Mot MM HEot=s =

FE
|1|o||
J@
o

1

&

., on S,
U, =
0 onS.

The total hydrodynamic force acting on the
surface S, is obtained as follows:

on S jP+ngndS
S,

=—[[(P+pg2)n.

Fig. 2 Scheme of the flow: the fluid domain
v, is bounded by the boundaries S, and S,

2.3 Steady time—average force acting on the
strip in the z—direction

The free surface suction force in the =
direction can be obtained by averaging eq. (6)
over time. The time—average value of the last
term in eq. (6) equals zero, and hence we can
derive the following equation

(7)

filon S,)=

[P+ pezhn. + po.o Jis

SL

From Bernoulli’s equation it follows that

P+ pgZ =—p§—%p(v®)z ®)

The time—average value of the first—order
hydrodynamic force, i.e. the first term in the
right-hand side of eq. (8),
Therefore, eq. (7) becomes

equals zero.
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ij(Vcb)znZ - pm}ds 9)

Substituting the expression for the total
potential given by eq. (1) into eq. (9), we have

L=l s (10)

where,

— 1 51 . . (11)
S =Y LL {EVW'VW n, —%%}JS

A :PIBV¢~V¢* n, =g, ~¢Z}d$ (12)
5,

The symbol * denotes the complex conjugate.
The function f is the steady suction due to
the body advancing with velocity ¢ under calm
water, and F is the steady suction due to the
waves and the wave—induced body motions. In
this study, only the last term F is considered.
Furthermore, only incident wave — diffraction and
incident wave — body motions interactions are

considered taking into account the linear
formulation of the problem. That is,
IO =+ o (13)

Using the equation of continuity (Laplace’s
equation) and Stoke’s theorem, the following
equations are derived without any difficulty:

7 _ 1 0 I:(Z—ix* cos/ﬂivsin/}’)
Jo = 2 pwd Re J [(”7,1 4 aje ds

(14)

-— _1 N 0 c(Z~ix" cos p+iysin
fou ZEpr ReZV}, J-((”,m -9, aje*(z s Biy ﬁ)dS

J=2  So

(15)

2.4 Free surface suction force and moment
acting on the submerged body

As mentioned above, in order to calculate the
motion of the body and the free surface suction
force, the strip method is employed.
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Fig. 3 Definitions of the free surface suction
force and moment

The steady vertical force and the moment
about jy~axis acting on the whole body are
expressed as follows.

Fzzjﬁdx (16)

E;Jf_}“-xdx (17)

Using the sectional free surface suction force
at x=x* from egs. (14)—(15) and the strip method
(16)—(17), the total force and moment are

obtained as,
— 1 &, (18)
F. = pod ReJ.L|:I7 +,Z;V/.[/}dx
— 1 R (19)
My—prAReIL{I7+,Z;V/.]/}.xdx

where, 1; _ J[¢7n o, i]ek(z-ufcos/wusin/i)ds
5

and *_ 0\ lz-ix" cos priysin )
IJ—J((pjnf(pl.&]e dsS

When calculating I;, the Haskind relation is
used instead of solving the diffraction problem
directly.

Here, the equations are derived by use of the
strip displacement in z—direction (see Fig. 4).

I = Aa)emw*a){ I(n; +an, )ez"ds}

S,
+ Ao [m33 + ((xz +cos’ /)’)m“ +m,, sin’ ﬂ]

(20)
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Free surface

v

v

G
Fig. 4 Section geometry at x = x*

The first term in the above equation can be
calculated directly while the second term is
evaluated by the use of the added masses of the
corresponding strip.  /myis the mass added in
direction / by motion mode /. Considering that
the strip theory can be employed on the
assumption of negligible three—dimensional
cross flow effects, the surge—added mass /7, of
the strip is set to zero here. In the same
way, I; ’s can be expressed as follows.
-[ze"z sin(kysin f)n,dS (21)

. s,
]; = phhewtaic’ cosp)
N,

- isinﬁk[m22 —,—]
p lwt’

Iekz cos(ky sin g)n,dS
N.

[m33 - J]
i,

[ie* sin (ky sin B )n,ds

(22)
I* _ ek(qm*aﬂx‘cosp)
.=

k

p

— ek(*hﬂr*a—u’cos B)
N42
1w,

(23)

—isin [i’k(m42 -
P
where rn4=yns-zn» is the roll moment arm,
from G to the body surface.

2.4 Motion responses
In the linear strip theory, the body motions are

% P

= &aots eS|
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divided into two parts. The first is heave—pitch
coupling, and the second
coupling. They are both obtained under the
assumption of small motions and negligible
surge. The motion equations are as follows

is sway-yaw-roll

A,E +BE+CE = E, (24)
where &, :Re[Xje’i“"”] represents the
motion for sway (/=9), heave (/=3), roll (=4,
pitch (/=) and yaw (/=6). The quantities £ are
the wave exiting forces. The description of the
coefficients in equation (24) is omitted here.
Solving the motion equation (24), we obtain
the motion responses X; (/=2~6). From the
responses, the velocities of any strip at x=x#,
which are used in egs. (18) and (19), are derived.

V,=-w,X, + a(ia)ex* + U)X4 + (— iwx" - U)X(,

(25)
Vi=-iw, X, +a(ia)ex* +U)X6 (26)
V,=—ioX, @7)

3. Experimental validation

The validity of the present prediction method
is confirmed by measuring the coordinates of a
submerged body and the free surface suction
forces in regular waves. As shown in Fig.5, the
experiment was carried out in the 2D wave
flume of University of Ulsan, which measures
35mL)x0.5m(W)k0.5m(D). The principal
parameters of the model and experimental
conditions are summarized in Table 1.

As shown in Fig. 5, two springs with spring
constant A;are attached to the ends of the body,
whose weight is balanced by the buoyant force,
and the lower ends of the springs are connected
to the flume bottom. Measurements are also
made for springs with spring constant 4z in the
same experimental conditions. By measuring the

4
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Table 1 Circular cylinder model and

experimental conditions

cylinder, {xd(cm) 100x 10
underwater position h/d=1.0
wavelength range, @w\/L/g 1.2~4.0

WAVE MAKER

WAVE
FREE SURFACE

| |
__CYUNDER _ _
MEASURING MEASURING
POINT™ £ SpRING POINT SPRING g
K1 K2 o)

100,

= — " ABsopggp

BOTTOM

Fig. 5 Experimental setup in 2D wave tank

displacements of the springs, we can obtain not
only the heave and pitch motion responses, but
also the free surface suction forces in the
following way. The experiments are carried out
only for the case of head waves and zero
forward velocity.

Fig. 6 is an assumed time varying spring
displacements, and to be helpful in description
of the following eqguations used in experimental
data processing.

z; ‘
/\ /\ /\ /\ Neutral line
VARVARVAR VA
Spring at A.P !
z

/N /\ /\ )\ Neutral line
\VARVARVERVA

v

Soring at F.P

Fig. 6 Assumed spring displacements
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(1) The heave is obtained by averaging the

displacements of the two springs:
Zm,_(t) — Zl(t) _'2' 22 (t)

(2) The pitch is determined from the
difference of the displacements of the two
springs:

_ a70)-2,0)
6(¢) = tan -7

Where, [ is the distance between locations
of the two springs.

(3) The steady suction force is obtained as
follows.

IR I G SRS

. 2

Where, Z; and Z» are the time—average values
of the two spring displacements.

As an example, Fig. 7 gives typical measured
displacements of the two springs recorded by a
camera, which are shown as a dashed and a
dotted line, together with their time-varying
average (heave) shown as a dashed—dotted line.
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Fig. 7 Measured vertical displacements of the

springs and the heave response obtained by
averaging them ( @ /L/g =18 A=0.0225;
h=0.1m)

As seen from Fig.8, in the range of relatively
long wavelengths the calculated results are in
rather poor agreement with the experimental
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ones for the heave while a good agreement can
be seen for the free surface suction force in
almost all wavelength ranges. The predicted
heave is overestimated while the predicted pitch
is underestimated, especially in long wave length
range. But it shows very good agreement in the
case of the suction force. The prediction of the
free surface suction force, which is the main aim
of the present study, can be said to be quite
satisfactory.
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Fig. 8 Comparison of calculation and
experiment
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4, Parametric Simulation

Various parametric calculations were carried
out for TRIDENT, a well-known submerged
axially-symmetric body model, whose geometry
is described in Table 2. The heave, pitch, sway,
yaw and roll are shown in Figs. 9 to 13. The
abscissas are a)m As expected, the depth
of submergence of the body heavily affects all
the motion responses. Because of zero roll
damping, the roll response becomes infinite at
the roll resonant frequency, and its effect is
neglected in the calculations of the suction
forces and moments. The free surface suction
forces and the moments for typical encounter
angles are shown in Figs.14 and 15, respectively.

Table 2 Geometry of the Trident Model

Station Radius(m)

1 0.00100
0.10180
0.17744
0.22621
0.25392
6~18 0.27766
19 0.26660
20 0.22723
21 0.00010

(SR SRS )

L=7.3634 m. LCG=0.3125 m forward of midship
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Fig. 15 Free surface suction moments
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As would be expected, all the responses
increase as the depth of submergence
decreases. The free surface suction force
consists of two terms: one is due to interaction
between the incident wave and diffraction
potentials, and the second is due to interaction
between the incident wave and body motion
potentials. As shown in the figures, the
contribution of interaction between the incident
wave and the wave diffraction becomes
dominant as the wavelength becomes shorter.
This corresponds to a small wave-induced
motion of the body.

5. Conclusion

From the presented results of mathematical
modeling, computations and  experimental
investigations the following conclusions can be
drawn.

(1) The motions of a submerged slender body
and the free surface suction force and moment
acting on it can be successfully estimated by the
proposed method based on the time averaging
concept and the momentum conservation
theorem.

(2) The validity of the proposed method is
confirmed through comparison between the
calculated and measured responses of a
submerged slender body in regular wave
systems

(3) Interaction between the incident wave and
wave diffraction potentials turned out to
contribute more significantly to the free surface
suction force in the short-wavelength range
where the wave-induced body motion is small

(4) The proposed method has to be validated
through  comparison with the near—field
approach and the direct pressure calculation
method in future studies.
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(5) A fully three—dimensional analysis
including irregular waves is desirable in future
research. It will provide a more adequate
description of practical cases involving arbitrary
shaped submerged bodies beneath a free
surface
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