• Title/Summary/Keyword: Fredholm index

Search Result 7, Processing Time 0.021 seconds

THE JUMP OF A SEMI-FREDHOLM OPERATOR

  • Lee, Dong-Hak;Lee, Woo-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.593-598
    • /
    • 1994
  • In this note we give some results on the jump (due to Kato [5] and West [7]) of a semi-Fredholm operator. Throughout this note, suppose X is an Banach space and write L(X) for the set of all bounded linear operators on X. A operator $T \in L(x)$ is called upper semi-Fredholm if it has closed range with finite dimensional null space, and lower semi-Fredholm if it has closed range with its range of finite co-dimension. It T is either upper or lower semi-Fredholm we shall call it semi-Fredholm and Fredholm it is both. The index of a (semi-) Fredholm operator T is given by $$ index(T) = n(T) = d(T),$$ where $n(T) = dim T^{-1}(0)$ and d(T) = codim T(X).

  • PDF

ZERO BASED INVARIANT SUBSPACES AND FRINGE OPERATORS OVER THE BIDISK

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.847-868
    • /
    • 2016
  • Let M be an invariant subspace of $H^2$ over the bidisk. Associated with M, we have the fringe operator $F^M_z$ on $M{\ominus}{\omega}M$. It is studied the Fredholmness of $F^M_z$ for (generalized) zero based invariant subspaces M. Also ker $F^M_z$ and ker $(F^M_z)^*$ are described.

ON THE DISSIPATIVE HELMHOLTZ EQUATION IN A CRACKED DOMAIN WITH THE DIRICHLET-NEUMANN BOUNDARY CONDITION

  • Krutitskii, P.A.;Kolybasova, V.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.63-77
    • /
    • 2005
  • The Dirichlet-Neumann problem for the dissipative Helmholtz equation in a connected plane region bounded by closed curves and containing cuts is studied. The Neumann condition is given on the closed curves, while the Dirichlet condition is specified on the cuts. The existence of a classical solution is proved by potential theory. The integral representation of the unique classical solution is obtained. The problem is reduced to the Fredholm equation of the second kind and index zero, which is uniquely solvable. Our results hold for both interior and exterior domains.

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF