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INSTANTONS ON CONIC 4-MANIFOLDS: FREDHOLM
THEORY

WEIPING L1 AND SHUGUANG WANG

ABSTRACT. We study the self-duality operator on conic 4-manifolds. The
self-duality operator can be identified as a regular singular operator in the
sense of Briining and Seeley, based on which we construct its parametriza-
tions and closed extensions. We also compute the indexes.

1. Introduction

The main purpose of the paper is to initiate the investigation of gauge theory
on a class of manifolds that have the simplest kind of singularity.

Let Xy be a compact smooth manifold with boundary Y. The associated
topological conical space X is by definition the gluing Xy Uy N along Y, where
N =10,1}xY/{0} xY, i.e., one boundary {0} x Y collapsing into a single point
¢. Clearly X is a compact topological space but the manifold structure at ¢ is
singular. To best suit this type of singularity, we place the (close) conic metric
of the form dt? +t2gy on N away from ¢, where gy is any smooth Riemannian
metric on Y.

Conical spaces and conic metrics arise naturally in many different contexts.
In Algebraic Geometry, a conic singular complex surface is obtained by con-
tracting a curve of negative self intersection in a smooth Kéhler surface. The
smooth Kahler metric descends to a conic metric on the complex quotient. The
point of such a construction is that away from the singular point, the complex
quotient is often topologically much simpler than the original Kéhler surface.
For example, contracting the sixteen (—2)-curves on a Kummer surface yields
simply the quotient of a torus under the natural involution. It is well-known
that negative curves are difficult to study since they are isolated and do not
form any moduli. In Symplectic Geometry, for symplectic 4-manifolds with
boundary a concave contact 3-manifold, the contact structure can be extended
naturally into a symplectic form which is compatible with a conic metric on
the end. A recent result of J. Etnyre and K. Honda [8] shows that any concave
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contact structure is fillable by infinitely many non-isomorphic symplectic man-
ifolds, thus quite different from convex contact structures. In String Theory,
there is a 6-dimensional conifold X with base S3 x S? introduced in Gopakumar-
Vafa [9]. The cone singularity can be resolved in two ways: either blow up the
52 direction resulting in the bundle O(—1) @ O(-1) over S?, or deform along
the $% direction resulting in the cotangent bundle 7*S%. The conjectured
duality in [9] says that the Gromov-Witten invariant of O(—1) & O(—1) is re-
lated to a Chern-Simons type knot invariant of S%. A possible approach might
be to study directly the conifold X and relate the invariants to those on the
resolutions.

The (close) conic metric on X defined above is conformally equivalent to the
open conic metric ds? + s2gy and product metric ds®+ gy, where 1 < s < 4-o0.
However the geometry in the first case is considerably different and harder than
the latter two cases. The main reason for such a disparity is due to the fact that
the open conic and product metrics are both complete whereas the close conic
metric is not. Thus the traditional analytic approach for complete metrics is no
longer suitable and new phenomena do emerge in close conic metric geometry
(see [1, 3, 4, 11]).

In the aforementioned examples, it is necessary to work with close conic met-
rics, since open or product metrics can not be Kahler or symplectic. (Of course
being Kahler or symplectic metrics is not conformally invariant.) The conic
singularities and manifolds with boundary are closely related, and topological
and geometric properties on manifolds with conic singularities may be viewed
as a ramification of special boundary value problems with non-local boundary
conditions. The conic singularity is interesting in its own right and was initially
studied by Cheeger [3, 4].

In the current paper, we introduce Yang-Mills theory on the conic 4-mani-
folds. This leads to two major changes from the standard theory in smooth
4-manifolds (e.g. [5]). (1) Since the metric is not differentiable at the cone sin-
gular point, the slice condition and d% operator require a modification similar
to [6]. (2) The functional-analytic framework and the Fredholm theory need
different setups than [5, 6]. In particular, the self-duality operator on conic
manifolds may have many different closed extensions which are all Fredholm
but with different domains and indices. Our main results can be summarized
as follows.

Theorem. (1) The self-duality operator di & d* on a conic 4-manifold X can
be identified with a first order regular singular operator Pa = % +t P+ Py
in the neighborhood of the cone point. In particular it is of (weak) Fuchs type.
(2) Let PiP be the restriction of P4 max to the ideal Dirichlet boundary con-
dition. The operator P{P is closed and Fredholm.
(3) The index of PP is given by

—2k

1 2
ZoladP) — = A
/X02(a ) 2(77130—1-m1)+’§>1 k(oK 1)R6817]P0(2k),
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where np,(z) is the eta function of the operator Py and my is the multiplicity of
eigenvalue 1/4 of the Laplacian operator A' on coclosed Q*(Y') with the metric
gy -

The paper is organized as follows. Section 2 gives a basic set-up and shows
part (1) of the Theorem in two lemmas. The parametric construction, following
from the method in [1, 2] (or the more general treatment in [11]), is given in
section 3. Then we prove part (2) in Theorem 3.5. Unlike the smooth manifold
case, there are different closed extensions of the operator P4. By applying the
results in [1, 2], we obtain the index formula part (3) in the last section.

2. A basic set-up

Let X be a closed, oriented conical 4-manifold with a cone point ¢. (The
analysis can be naturally extended to the case of a finite number of cone points.)
Let N be a neighborhood of ¢ in X, N = (0,¢] x Y, where the 3-manifold ¥
has a metric gy. Note that the 4-dimensional Yang-Mills theory is conformally
unchanged. Thus up to conformal changes, N can be equipped with the metric

dt® + tzgy.

The metric satisfies the conformally conic manifold definition 1.1.1 of [11] (with
h=1,¢=0> —1 and any J). The manifold is a product near the singularity.
Our point of view is to transfer the geometric singularity into a singularity of
a geometric differential operator on a manifold with boundary. The natural
differential operators involving the conic metric are differential operators of
regularly singular operators [1, 2] or Fuchs type operators [11].

Let P be an SU(2)-principal bundle over X. Let A(P) be the space of
SU (2)-connections on the principal bundle P, and G(P) be the automorphism
group of P. Note that A(P)|x is an affine space modeled on Q* (N, adP|x). We
can naturally identify Q(N,adP|y) with Q!(Y,adPy) ® Q°(Y,adPly). More
generally and in order to perform further calculations, we give an identification
between p-forms on N and p-forms, (p — 1)-forms on Y

(1) fo 1 QP(Y,adPy) & 9P~ 1(Y, adPly) — QP(N,adP|y)

(Wpy wp—1) > P32 (m*w, 4+t % w, 1 A dt),

where 7 : N = (0,e) x Y — Y is the projection on the second factor. Note
that one has

| fp(wp, wp—1) HQH(QP(N,adPIN))

g
Z/O {pr”iz(m(y,adpy)) + pr—l|'%2(QP—1(Y,adP|Y))}dt'
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With respect to the metric gy = dt? + t2gy,
*gn fp(Wp, Wp-1)
= #gy (P73 (n*w, + t™ i w, 1 A dt))
= t3/2_”7r*(*gywp) Adt + 32 P ((=1)47P *gy Wp—1)
=t ((—1)47P wgy wpot) + 87" (kg wp) A di)
= fap((=1)* P xq, Wp—1,%gy Wp)-

Hence we obtain the Hodge-star operator *,, acting on the identification (1):

(2) *gu o (Wp, Wp—1) = fap((—=1)*7P gy Wp—1,%gy Wp)-
The restricted gauge group over N is denoted by G(P)|n. For any connection
A € A(P)|n, there is a (temporal) gauge transformation in G(P)|y under
which A does not contain the covariant derivative in ¢-direction, i.e., A = a(t),
where each a(t) is a connection on Y and ¢ € (0,¢). Note that the connection
a(t) may not be defined at ¢ = 0 corresponding the cone point in X. The
covariant derivative d4 : Q°(N,adP|N) — Q(N,adP|n) can be transformed
over to

da: Q°(Y,adPly) — QL(Y,adPly) @ Q°(Y,adPly).
We need to calculate d% : Q1(N,adP|y) — Q°(N,adP|N) through the identi-
fication (1).

Lemma 2.1. The operator d¥ can be identified through (1) with the operator:
QNY,adPly) ® Q°(Y,adP|y) — Q°(Y,adPly)

(o, @) —¢ +t7d Y o+ t“1¢>.

Proof. The proof is given by a direct calculation as follows.

difile, @) = ()P w ) da (kg fila, )

( ) *gn dA(f3(~ *gv b, *gya))
= (—1) xgy da(t¥? (=7 (xgy 8) + /27" (x5 .0) A dt)
SEe ey “(rgy ) A dt
32 %, 09 1/2_«
+ 4 (*QYEAdt_t 7 (dg *gy @) A dt)
d¢ _ _13
= *ng4(0 *QYE —t lda *Qy a+t 15 *QY ¢)

. 3
= fo(- +t7 ' o+ 5t71:0).

The identity follows from (1) and (2), since the connection A = {as};c(0,¢) has
no dt-component.
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With respect to the conic metric gy on N, one has
dh : QY(N,adP|y) — Q3 (N,adP|y).
Through the identifications (1) and (2), we have the following result.
Lemma 2.2. The operator d; can be identified with the operator

QHY,adPly) & Q%(Y,adP|y) — Q*(Y,adPly)
oo _ 1
(a7¢) = E +1 1(*gydaa + da¢ - '2_a)
Proof. We calculate the corresponding d 4 first.

dafi(en, @) = da(t ™ (n*a +t7 " p A dt))

1
=t 1 2p*d,a — —2-t_3/27r*a Adt
~1/2_« O —2/3_x
+t (—8—t)/\dt+t 7 (da @) A dt

1
=273 2(t" 1" (dgo) + t‘lw*(%% +t et — §t_10‘) A dt)

= folt td,a, 88—? +t7 d,p — %t_la).
Now by the definition of d = 1—WL—;*’—J"d 4 and the above equality, we have
dh fi(e, ) = L fo(wa, wr) by (2), where
wo  =t"ldga + %4, %—Ot‘ +t L xg, dodp — %t‘l *gy QU
wy =82 +t7Mdeg — St e+t %y, dac.
The components w, and w; are identified by the Hodge operator *4, on Y.
Therefore d can be identified with w, through (1) and (2). O

Remark. As in the usual instanton theory on smooth 4-manifolds, we need
to use d% to build a slice of the configuration space and to get the elliptic
operator d; &d%. We will follow the method used in [1, 2] to build a parametrix
for the self-duality operator with conic singularity. For the singular operator

d}; @ d*, the construction of parameterization can be constructed from the
general method in [11].

Thus the self-duality operator dj @ d* restricted on N can be identified with
Pa: QY(Y,adPly) @ Q0(Y,adPly) — Q*(Y,adP|y) @ Q°(Y,adPly)
by Lemma 2.1 and Lemma 2.2 through the L2-isometry. So we have:
o 1 1 -1
=+ sxydy — = t7d, o
(3> PA<aa¢):<at ¢ * 2 - )( >
gy ) L
As an operator,

1
(4) PA:—6—+%(*Y‘1" 2 d“).

* 3
dxy 5
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Let us recall Definition 1.1.2 of [{11] about operators of Fuchs type.

Definition 2.3. 1. Let E, F be Hermitian vector bundles over X. We denote
by Diff*(E, F) the set of differential operators of order < 4 acting from sections
in E to sections in F.

2. Denote by ¢ the operator of multiplication by ¢ and put D = —t%. A
differential operator of Fuchs type of order u € Z, and weight v > 0 is an
operator P € Diff*(E, F) such that

7
Ply =t BiDV,
k=0
with By, € C*((0,¢), Difft* *(E|w, F|n)) N C([0,¢), Dift* *(E|n, F|n)).
3. P is of weak Fuchs type if B € C((0,¢), Diff* *(E|y, F|n)) only.

Lemma 2.4. The operator djy @ d% : QY(X,adP) — Q° @ Q3 (X,adP) is a
differential operator of weak Fuchs type of order 1 and weight 1.

Proof. Through the identification with the operator P4 on the conic neighbor-
hood N, it is sufficient to note that P4 can be written as
_1
PAZt—l(—D—}—(*Yda B Céa ))’

*Yy 2
d; 5

so in the notations of Definition 2.3,

1
By =1Id and Bo(t) = ( *yds 3 da )
2

d;y
are both smooth for ¢ € (0,¢). Hence d ® d7 is of weak Fuchs type. O

We obtain weak Fuchs type only since a(t) and therefore By (t) are undefined
at t = 0 in general.

Note that the operator dj alone cannot be a differential operator of Fuchs
type and the techniques and estimates in [1, 11] cannot be applied. To remedy
this, we need to include d%, i.e., consider the self-duality operator as a whole.

3. A parametrix construction

In this section, we construct parametrices for our first order self-duality
operator of Fuchs type near the boundary (the neighborhood of the cone sin-
gularity). The important feature of the construction is that the space of closed
extensions is finite dimensional and closed extensions are Fredholm operators
for the operator of Fuchs type on a compact manifold with conic singularities.

To get the parametrices, we need some kind of ellipticity for the self-duality
operator. The operator is certainly elliptic in the interior of X. In addition
some condition must be imposed near the tip ¢t — 0. We follow Lesch’s approach
[11] here. So we need now to strengthen our requirement for the connection
A= a(t) near t = 0:
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Assumption. There is a smooth connection ag on Py such that supy |a(t)
—ag| < Ct't for some number v > 0.

This assumption will be used throughout the rest of our paper. With this
assumption, By(0) exists and P4 = t~}(Bg + D) is a first order differential
operator of Fuchs type as in Definition 2.3. Moreover we can express our
operator as

b}
Pi==—+t"'Py+ P
A at + O+ 1s

where

Py = ( *yda, ~ 3 dgo ) p = 1 < *gy (a(t) —ao)  a(t) —ao )
dag 2 ’ ¢\ *gy (a0 —a(t))xgy 0
are smooth operators away from ¢ = 0 and continuous up to ¢t = 0. Also note
that Py is a compact zero-th order operator.
As for ellipticity near ¢ = 0, we observe that

"
ox' (Pa)(2) = Y_ Br(0)2F = By(0) + 2
k=0

is a parameter dependent elliptic family of differential operators with parameter
z € iR. Hence P4 is an elliptic operator of Fuchs type in the sense of [11].
There is a general method in [11] to get the parametrix construction. We would
like to work out explicitly for the self-duality operator with cone singularity in
order to understand better on the behaviors from analytic point of view.

Digression. Existence of a limiting connection at the conic singularity.

The assumption above is satisfied in our intended applications that will
include orbifold singularities, blowing down negative curves etc. To illustrate
this and also more specifically the difference between a close conic metric and
an open conic metric/cube metric that was alluded in the Introduction, we
pause to digest the simple case of R* with the standard Euclidean metric. It
is well known that a charge 1, SU(2)-instanton, with center at 0, is

A—1Im zdr ’
1+ z2

where © € R* = H is viewed as quaternion. Its curvature is F' = (1df|/g\c(|ﬁ)2 with

density |F| = (1 + |z|?)™%. We view the origin as the trivial cone point with
base S%, and we can rewrite the connection in terms of the generalized polar
coordinates (r,6) as

r2

14 r2
where 6 € S3 is viewed as a unit quaternion. This means that a(r) — 0 here
as we approach the cone tip r = 0, i.e., the assumption above is satisfied. Note
that A is not flat near 0: |F| approaches 1 as r — 0. This contrasts with
the open cone at 0o of R*, where A is asymptotically flat. (Incidentally this

A=

Im(68~'df),
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suggests that some kind of gluing procedure is possible between close and open
conical instantons). Now transform R*\{0} into the cylinder (—o0o0,00) x $°
via the map (r,8) — (Inr,8). Of course, the model connection A is still not
asymptotically flat near the end t = Inr — —oo under the equivalent metric
dr? + r?d§? = ¥ (dt? + d6?). However under the tube metric dt? + d6?, which
is conformally equivalent to the Euclidean metric, A is asymptotically flat near
—00, since the curvature density under the tube metric is |F| = E(ﬁhTt’ which

goes to 0 ast — —oo. This simple picture explains why we can have exponential
decays for curvature of instantons under tube metrics but we can not do so
under close conic metrics. Moreover it indicates that conformal metrics can
lead to quite different geometry.

Let us return to P4. The operator P4, acting on L%((0,¢), H) with domain
C§°((0,¢), Hp)}, amounts to integration of a first order ordinary differential
equation, where H = L(Q*(Y,adP|y) & Q°(Y,adP|y)) and Hp is the com-
mon domain of the family of self-adjoint operators Py + tPy, t € (0,¢], in
L7, (9YY,adP|y) ® Q°(Y,adP|y)). Hence we have the following operator
norm inequality:

(5) IPL(1Po| + D)7+ [(Po+ 1) Ry < C,

where the estimate is uniformly in (0,¢] from our assumption on a;. This is,
in fact, a first order regular singular operator P, from [1, 2, 3, 4].
For f € L?(0,00), define two integral operators

t
Poaf(®) = [ (D f@de, 5>,

¢
1
P f(t) = / (C) f(z)de, s< =
T 2
On L2(0, 00), these two integral operators satisfy the identity
o} 3}
6 —_— -1 s = (— -1 s = R
( ) (8t+t 8)]307 (8t+t S)Pl’ Id

Our parameterizations are constructed from the combinations of Py s and P ;
near ¢t = 0.

Lemma 3.1. For f € L%(0,00) and t sufficiently small, the following estimates
hold.

(D) Po,sf ()] < 4/ ey - Wl L2(0,0y for s > ~1/2;

|PLsf(t)] < { oy Il s < —1/2

VI fllz2c0.8) + VMO flls s=—1/2, 0<6 < 1.
(2) for |s| < 1/2,

! t
Puaf @+ [ a*f@)isl < |/ 5 1l
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(3) for0<e <1,

1

[Po,sll + 1Pr,—sll < Cals,e)(|s] + 1)~ s> ~3
[PLsll + [Po—sll < Cals,e)(lsl + )7, s <1/2,

where lim. 9 Ci(s,€) =0, i = 1,2, and uniformly for |s| > 2.

Proof. (1) and (2) follow from direct calculations. (3) follows from (P st")* =
—t" Py 5, where Py ¢t” is bounded in L2?(0,¢), and from the standard estimates
for integral operators (see [1] Lemma 2.1 and Lemma 2.2 and [7, 12]). O

The maximum extension P4 max of P4 has domain
D(Pamax) = {u € L*(Q' @ Q°(Y,adP|y))|Pau € L* (' @ Q°(Y,adP|y))}.
A kind of ideal Dirichlet boundary condition for Py is defined to be
DP(Pa) = {u € D(Pama)u(®)llr = o1) st — 0},

Denote by P3P the restriction of P 1ax to the domain D' (P4). The bound-
ary parametrix QP is given by

iD
Q = EBsESpecPo,SZOIDO,s SP) ®s€SpeCP0,s<OP1,s,

with each term P; , (¢ = 0,1) in the appropriate eigenspace of F.
Lemma 3.2. Ify € C3°(—1,1), then ¥Q*° maps L*((0,1), H) into DP(P4).

Proof. By Lemma 3.1 (1) and (2), f(t) = ®sespecp, fs(t) has an unique expres-
sion with f,(t) projection on the eigenspace of Py for the eigenvalue s.

o0 ol <1t 5%y [ @t <t [ 10l

Similarly, we have

| @sco Prafa®lly < CC 3 72 fullZa + tlntl] £ ol13

—1/2<s<0
S
0 Y sz = o,
|2s + 1]
s<—1/2

ast — 0. So Q*P f(t) = o(1) as t — 0. One has the following:
Pa(pQf) = wPAQin +y' QP f
= w< 2+t P+ P)(sespecro fo(1) + 9 QS

— Z (2 RS+ UPQT S+ Q S

s€SpecPy

=f +YPQPf+ 9 QPY,
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where f(t) = Py,sf(t) if s > 0, and P; 5 f(¢) if s < 0. The last equality follows
from (6). It now suffices to estimate

1Pl + QP FIF = D (sl + 12 Po,sfsllF + D (15l + D21 Pus el

s>0 s<0

< S Cils e Mel2 + 3 Cals, o)1l

520 $<0
< max{C1(s,¢)?, Ca(s,€)*}I £,
by Lemma 3.1 (3). Thus ¥Q*® maps into the correct domain. |
Lemma 3.3. If u € D'P(P4) and u(t) = 0 for t > 1/2, then QP Pyu =
u+ (QP Pp)u.

Proof. Let {es}sespecr, be an orthonormal basis in H with Pye; = se;. Define
v(t) = (& + ¢t 'Po)u(t). So one has v(t) = Pau(t) — Pru(t). Thus vs(t) =
(v(t), es) can be calculated by
0
va(t) = (o + 17 PoJu(t) )
= (u () + t Pou(t), e,)
= u;(t) +t1sus(t), s € Spechy.
So vs € L?(0,1). Since us(1) = 0 for all s € SpecP,, for s < 1/2,

Py vs(t) = Py o(u, () +t Lsus(t))

t

T ’

- /1 (D) (uale) + 27 suy(2))da
= u,(t),

from the integration by parts; for s > 0, we use Py s on vs(t):

Py svs(t) =A (%)S(u;(x) + 27 su,(x))da

t ¢
=t° lim/ xsu;(m)dx—t—t“s/ sz tug(z)da
=us(t) —t }11%6 us(9).
For s > 0 and v € L', we have | P, sv(t)| < fot |v(z)|dz = o(1), and us(t) = o(1)
as u € D*P(Py) for t — 0 sufficiently small. Hence Py ,v(t) — us(t) = o(1)(=

—t7° lims 0 6°us(6)) as t — 0. Therefore lims_,q 6°us(8)) = 0 for s > 0, i.e,
us(t) = Po,svs(t) for s > 0. This completes the proof with the right domain. O

Lemma 3.4. There is a positive ¢ < 1 such that for ¢,9 € C§°(—¢,¢) with
Yo = ¢ and u € DP(Py),

¢u = VQ'P Pagu,



CONIC SINGULARITY 285

for some bounded operator V- € L?((0,1),H). Moreover ||¢(|Po| + Vullm <
C||Padul -

Proof. Choose x € C$°(—¢,¢) with i = 1. Since ¢u € D*P(P,4), we have
f = Pa(¢u) € D'P(P4) with f(t) =0 for t > 1/2. By Lemma 3.3,
f=ou=Q"PPaf - Q"PPif = Q"PPs¢u — QP Pgu.
By the choices of smooth functions ¥¢ = ¢, x1 = ¥ and x¢ = ¢, we get
¢u = QP (xPaf) — vQ*P Pixdu
= YQ"™P (xPaf) + (—¥QP Pux) (v QP (xPaf) — vQ™° Pixdu)

=D _(—vQPPix)Y (¥Q™ (xPaf) + (—¥Q"° Pixgu)"*".
=0
The operator norm has ”inDPIXHLz((O,E),H) < 1/2 for ¢ sufﬁciently small,
and V = ijo(—mePlx)J is a bounded operator with ¢u = VyQP Py¢u,
ie., VoQPPy = Id. O
Theorem 3.5. (1) PiP is a closed operator, and

(2) PP : DP(P4) — L2(Q' @ QO(Y,adPly)) is a Fredholm operator.
Proof. (1) If u, € DP(P4) with u, — u and PPu, — v in L*(Q! &Q0(Y,
adPly)), then u € D(Pa max) and v = Pau in L2(Q! @ Q°(Y, adPly)). For ¢
in Lemma 3.4, ¢ € C§°(—¢,¢) with ¢ = 1 near 0, we get

Pun = VYQ'P (Paduy)
= VinD (¢,'U'n + ¢PA,maxun)
— VYQ™P(¢'u + ¢v)
= ¢u,
and |lu(t)||g = o(1) as t — 0. Thus P is a closed operator.

(2) By (1), DP(P4) is a Hilbert space under the graph norm. It suffices
to show that P4” has finite dimensional kernel and cokernel for the Fredholm
property. ~This is amount to constructing right and left parametrices for PiP.

Let ¢, ¢ € C§°(—¢,¢) be such that ¢ = 1 near 0 and ¢ = 1 near supp¢, and
¥, € C§°(M) such that ¢ + 1 = 1 and ¥ = 1 in a neighborhood of supp®.
Let P, : L*(Q' @ Q°(Y,adPly)) — L%,,.(Q" & Q°(Y,adP|y)) be an interior
parametrix for P4 (see [5, 6]) with
(7) PapPap =%+ Ri;  $PyPa=4 +L;,
where R; and L; are compact in L?(Q!@Q°(Y,adPly)). Define Q4 = ¢QP ¢+
¥ P;p. By Lemma 3.2, Q'P maps into D*P(P4) and

PiPQa=PL(¢Q'P o+ YPy)
=1d+¢ QLo+ oPQPo+ R,
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where q~5/ stands for (% + t’lPo)(;S. If the supp¢ is sufficiently small, then
16 QP ¢ + $P1QPo|| < 1/4 and PiPQ4 = Id + R + R; with R; compact
operator and |R|| < 1/4. This implies that

PPQs(Id+ R =Id+ Ri(Id+R)7},

and PP has finite-dimensional cokernel.
On the other hand, by Lemma 3.2, we have, similarly,

QaP{° = (6Q ¢+ 4¢Py PP
=Id+ (3QX Pro — QW) + Li,
for sufficiently small ¢,
LI = 1(6Q P — $QP 8 < 1/4,
and L; is a compact operator. Hence
(Id+ L)'QaPP =Id+ (Id + L)' L;,
and PP has finite-dimensional kernel. Thus the desired result follows. |

The proof of Theorem 3.5 is standard in (1, 11]. The result can also follow
from the general theory in [11] for the differential operators of Fuchs type.

Corollary 3.6. Let P(t) € L(H,, H) be a smooth function of t € (0,1]. Then
for x € C(—e,¢e) with ¢ sufficiently small and Pa = D 4 xtP(t) is a
Fredholm operator on D*P(Py4) with Ind (PP) = Ind (Pa).

Proof. Note that xtP(t) = P(t)(|Py|+1)~'xt(| Py|+1) is bounded from D'P(Py4)
to L2(Q' @ Q°(Y,adP|y)). The family P{P(s) = PP +sxtP(t) is a continuous
function of s € [0,1] with values in L(D*P(P4), L*(Q! @ Q°(Y,adPly))). By

Theorem 3.5, with ¥ such that x3) = 0, P'P(s) is a Fredholm operator for each
s €]0,1] and the index is constant. O

Therefore the index of P5” can be conveniently computed by the index of
the operator % +t71 Py without P; term. We will apply Corollary 3.6 in section
5 for the index calculation.

4. Closed Extensions for P4

For the operator P4 = % +1t~1Py + P;, we have the formal adjoint

0
P = —5 +t71P; + P},

where Py and P; are self-adjoint due to the self-adjointness of Py + tP;.

Lemma 4.1. Ifu € D*P(P,) withu = 0 fort > 1, then there exists a operator
QAmax = Ds<1/2P1,s © Do>1/2F0,5 such that

QA,maxPAu =u-+ (QA,maxPI)uv
with QA maxP1 1s bounded in L*((0,1),H) and s € SpecP,.
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Proof. Similar to Lemma 3.2, we take an orthonormal basis of eigensections
{es}sespecp,- Let u, Pau € L%, Define
h(t) = u (t) + t71 Pou(t) = Pau(t) — Pr(u(t)).
By the uniform estimates, one gets
1Presllm = [1P(1Po] + 1) (| Pol + Desllar

< Cll(1Pol + Ve

< C(|s| + 1).
Hence for each s € SpecPy, hs(t) = (h(t),es) g is given by

hs(t) = (Pau,e,) — (u, Pfes) € L?
since both u and Pau are in L2. By definition u(t) = 0 for ¢t > 1, us(t) = 0 for
t>1, and for s < 1/2,
Py shy = Pl,s(uls +t7su,) = us € L2

For s > 1/2, using integration by parts we have
1
s / 2 hy(@)da = Posha(t) — Poohs(t) € L2,
0

By the same argument in Lemma 3.3, fol z*hs(z)dz = 0. Hence Py hs =
Py shy = ug for s > 1/2. For all s € SpecPy, Qa,maxh = u gives the desired
equality
QA,maxPAU =u-+ (QA,ma.xPl)u-
O

Theorem 4.2. (1) P max and Pa min are Fredholm operators;
(2) The eatensions of Pamin are all Fredholm operators and correspond to
the subspaces of the finite-dimensional space D'P(P4)/DP(P}).

Proof. Choose qS,f),z/J,gE as in Theorem 3.5, and define the parametrix Q =
#Q A max® + P10, Then, by Lemma 4.1, we have

QPA,maxu = (q;QA,maxqs + 'J)Pi'Lp)PA,maxu
=u-+t (QZNSCzA,maxljl(]5 e (Z;QA,maxﬁbr)u + Liu.

By the same estimates in Theorem 3.5, the operator (J)Q A maxP1O— g?)Q A,maxdf)
has norm < 1/4 and L; is compact. Therefore ) P4 max is Fredholm with finite
nullity. So the operator P4 max has finite nullity. Since it is an extension of the
Fredholm operator PP, it also has closed range with finite codimension. Thus
P4 max is Fredholm.

The same argument applies to PZ,max and its adjoint Pa min is Fredholm
too. Note that D(Pamin) C D(Pamax) With finite codimension since both
operators P4 max and Py min are Fredholm. Thus

Ind (PA,max) = Ind (PA,min) + dimDiD (PA,max)/DiD (PA,m'm)a
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where DD (P 1in) = D*P(P}) and DP (P4 max) = D'P(Pa). O

The finite-dimensional space D'P (P4 max)/D*P(Pa min) is isomorphic to
@|s|<1/2 ker(Po — s) by results in [1, 11]. Closed extensions of P4 min are deter-
mined by the asymptotic behavior of the elements in their domains.

Lemma 4.3. For s € SpecPy with |s| < 1/2, there are C°-linear functionals
¢s 0n D(Pa max) such that fort € (0,1), 0 < e <1 and u € D(P4 max),

”U(t) - Z cs(u)t‘ses”H < Ey/ t’lntl + Cs,u\/ia
|s|<1/2
The same estimate holds for P}, mutatis mutandis.

Proof. By the same argument of applying Lemma 3.4 as in Theorem 3.5,
Lemma 3.2 implies that v is an element of D(Pa max). Thus ||(|Po]+1)u(t)||x €
L%((0,1)) and

/0 (1ol + Du(t)[[Fdt < C([|Paul® + fful®).

For s > —1/2, h = u + t~'Pyu, there is a c,(u) with

us(t) = t7°%[cs(u) —i—/o z°hg(x)dx]

from integration by parts. Since fg(%)shs(:c)dx € L? by Lemma 3.2, for s >
1/2, ¢s(u) =0. For |s| < 1/2 and let t = 1,
1
cs(u) = us(1) —/ z°hs(z)dz,
0
and u,(t) = t™5us(1) + Py che(t) for s < 1/2. By interior regularity, u €
L?((1/2,1),H) and
us(DI? < fus (@) + |Prshs ()],

1
lu()1F < C/l/z(HU(t)ll%{ + llu (1)1t
Hence c¢,(u) is continuous on DY (P,), and
> 2 u (1) < Cut.
s<—1/2
Combining Lemma 3.1, for 0 < § < 1,

)
S |Puohe@)F < HIRI% + 2|10 8]y a3 + 2l Int] / \h_1)[2da).
s<—-1/2 0
By Lemma 3.1 (1)
S Juel) — @t = 3 [P < CHlbl

s>—1/2 s>—1/2
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Thus the result follows. O

With Lemma 4.3, we can define various extensions of P4 min and com-
pute their indexes in terms of the extension determined by the subspaces of
®)sj<1/2 ker(Py — s). Let P4,y be an extension of Py min by restricting Pa max
to the domain D(Pa,w) = {u € D(Pamax)| Xjs<1/2 Cs(w)es € W}, where W
is a subspace of ®|y<1/2 ker(Py —s). So Pa w is automatically closed since the
functionals ¢, are continuous on the domain D(PA max). Our main result of
this section is the following theorem.

Theorem 4.4. The operators Payw give all closed extensions of P min for
all subspace W C @y5)<1/2ker(Py — ). Piw = Paw<y, where W is the
complement subspace of W in ®|5<1/2 ker(Py — s). Furthermore,

Ind (Pa,w) = Ind (P4 min) + dim W.

Proof. For u € D(Pa,max) and v € D(P} ..),
(8) (Pau,v) = (u, Pio) = Y cs(u)c,(v),

|s|]<1/2
where c; are functionals for P} . on the domain D(P} ,,,.). By Lemma 4.3,
with ¢ € C§°(—1,1) and ¢ = 0 near t = 0,

u(t) = o(t) D cslu)t e, +ilt),

|s|<1/2

u(t) = (t) Y ()tes +(t),
[sl<1/2
with [|2(t)|| + [[9(¢)]| < C+/t|Int| as t — 0. Thus we obtain
1
(Pau,v) = im [Py, g + G P31~ o)

€

= lim ~(u(e), (&)} + (u, Piv)

= (u, Pjv) — Z es(u)c™ (V).
ls|<1/2

For |s| < 1/2 with any constant cs, set u(t) = @ > is<1/2 Cst°€s. Then one
can compute the term

Pau(t) =¢ (1) 3 cteatd > cat T [P([Pol + 1) (|s| + 1es € L2

s|<1/2 [s]<1/2

Note that P} .. = (Pamin)* and (P} ya)* = Pamin. ¢s(u) = 0 for all s if
and only if u € D(Pa,min). Thus the equation (8) implies u € D((P} ,,,,)%),
the converse follows from the continuous functional c;.

For any extension P of Pgmin, define W = {3, ;5 cs(u)eslu € D(P)}.
Then it is clear that P C P4 w. For v € D(P4 w), thereis an element u € D(P)
such that ¢,(v—u) = 0 for all s by definition. So u—v € D(P4 min) C D(P) by
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the above necessary and sufficient condition, therefore P = P4 w. The index
formula for P4 w is clear from Theorem 4.2 and D(Pa,w)/P(Pa,min) EW. O

Note that for u = (o, ¢), Pou = su is equivalent to the system of equations:
*ydog0 + dagd = (s+1/2)a
d¥a =(s-3/2
Thus, by applying d;¥ to the first equation, one gets
A =diY doydp = (s +1/2)diY o = (s + 1/2)(s — 3/2)¢.
Let HY, = {¢ € Q%(Y,adP|y)|A% = A(s)¢}. Hence for the nonnegative

operator A® the eigenvalues A(s) = (s+1/2)(s—3/2) > 0. So s € (—o0,—1/2]U
[3/2,00) if and only if A(s) > 0. For —1/2 < s < 3/2, H},, = {0}.

Corollary 4.5. Let H} .. = {a € Q}(Y,adP|y)|di¥ o = 0,A" = Aa}. Then
we have

Bs|<1/2 ker(Fy — 5) = EB18|<1/2H(ls+1/2)2,cc-
In particular, if EB|S‘<1/2H(18+1/2)2’CC = {0}, then there is a unique closed ex-
tension P4 of Pa, where A' is the Laplacian operator on Q¢(Y,adPl|y) with
the twisted connection ag (1 =0,1).

Proof. Tt suffices to see @5)<1/2 ker(Py—s) = {0}. For |s| < 1/2, one must have
¢ = 0 since A(s) < 0 from the above discussion. Thus the equations reduce to

*ydg,o = (s +1/2)a,  dp¥a=0.

Thus the space ®|5<1/2 ker(Py — s) can be reduced to {(a,¢) : ¢ = 0, €
H{ 119 oo} The results follow. 0

5. The index calculation for P4

By Corollary 3.6, the index of P4 with respect to a closed extension in §4 can
be reduced to the index of % +t~1 P, with respect to the closed extension. By
Theorem 4.4, we can just calculate the index of P}‘D (the restriction of P max
to the ideal boundary Dirichlet domain D*?(P4)) with P; = 0.

Note that PiP is closed and AY = (PP)*PiP, A7 = PiP(PiP)* are non-
negative, self-adjoint. By a straightforward calculation, one gets

0? _
A: = 32 +1 2(P02+P0),
- ? 2
AA:—"a?-‘I-t (PO—P())

By the completing square, we have P + Py > 1/4. Any nonzero eigenvalue of
A% and A} coincide with same multiplicity, i.e., u — P3Pu and v — (P{P)*v
are injective between the corresponding eigenspaces. The idea is to show that
(AL + X)=™ are trace class and then ’

tr (A + )™ ~tr (A7 + N7 = A" Ind(PP
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for appropriate m, since all terms approach to zero as A — 0 except the term
AT

Let A be the operator in L?(R, H) with the boundary condition u(t) =
0(1‘) and PiPu = % +t~1Pyu = O(1). Similarly for Ay with u(t) = o(1) and
(PPYy*u = —2% 4 71 Pyu = o(1). By the standard result in [12], the resolvent
for A% is obtained by

(Aﬁ + A)_l = @SGSpech(A;t + >\)*1 R T,

where AT = ~—§t—2 +172(s% £+ 5) and 7, is the projection on the s-eigenspace of
P,. Note that

Al 0 0 d, -1 9
P02+P0:< 0 AO>+2(d*Y 00>+< 04 15 |
ao

4

Al 0 xyd, 0 30
2 — _ Y Qag 1
rem=(% w0 )20 )+ (8 1)

where A is the Laplacian operator on Q*(Y, ad P|y ) with the twisted connection
ag.

Let us first compute the resolvent kernel of A} + 22. Let uy and uq be the
independent solutions, 0 < t < oo,

(—g—; +t72(s2+s)+22u =0
w (t) +t 1 Pu(t) = 0(1)  u(t) =o(1)

By Theorem 16 of Chapter XI1I of [7] in page 1329 (or §8.4 of [12]), the resolvent
is given by

(AT + 227 () = R(z9)f = / " H@)K (¢, 2)da

for f € L(0,00), and the kernel is given by

uy (¢,2)ua(z,2)

x <t
K(t,x;z) = { u ‘(/‘;(:)lllu(zt)z)
Wl b

where W(uy,ug) = u;uz —ulu'2 is the Wronskian of u; and ue. By substituting
u; = t1/2v;, so v1, vy are fundamental solutions of

(9) —t20" — 0 + ((s +1/2)® + (t2)*)v = 0.

Hence the general solution can be expressed u = ¢1t/2v; + cot'/?vy. Theorem
16 of [7) shows that there is exactly one solution (t, z) = t'/2vy(t2) satisfying
the condition at ¢ = co. Unless —1/2 < s < 0, ¢(t,2) = t'/2v1(t2) is the
unique solution satisfying the condition as ¢t — 0. Since W (¢, v) = tW (v1,v2)
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and vy, vz are solutions of (9), one gets
toyvy = (—t20] + ((s +1/2)? + (t2)>)v1)v2
= — 120, vy + v1((s + 1/2)% + (£2)))v2
= —t20, vy + v1 (2vy + tvy).

Hence v1vy — vy = —t(vyvg — vlv;)/ and vjvg — 110y = 1/t. So W(p,9) =1
and the kernel is ’

K(t,z;7) = i o [ (@) Pu(t)us(e2) @ <t
L ¢(a,/2()¢wl(;),z) (tx) 201 (x2)va(tz) x>t

The solutions v; and v, are depending on s and z. Let vy = |s +1/2]. If
Im 22 #0,¢ < z,, the Kernel K*(¢t,x;z) of (A} + 2?)~! can be expressed as

(tz) /vy, (t2)va,, (32) ifs<—1/20rs>0
(tx) vy, (t2)vo,, (z2) if —1/2 < s < 0;

Similarly, the kernel K~ (t,z;z) of (A7 +22)7!is

(tz)?vy, (tz)ve,_(z2) ifs<O0ors>1/2
(tz)Y %0y -y (t2)vg, (zz) if0<s<1/2

Let P* be the standard pseudo-differential parametrix for (AF + A)™™ in the
interior away from t = 0. If ¢, € C° vanishing near t = 0 and ¢ = 1 near
supp¢, then

(AT +N)™YP ¢ = ¢ — R,
with || R;||s: = O(A™F), where k can be arbitrarily large. Choose x € C§°(—1,
xg) with zp < ¢ and x = 1 near t = 0 and x¥ € C§°(—1,¢) with x = 1 for
0 <t < tp with ¢9 > xg. Let x; =1 — x and %; € C§°(X) be vanishing near
t = 0 with x; = 1 near suppy;. Define

P* = X(Pa+N)7"x + %P xi
Then (A% + \)P* = Id — RE, where

98 B
R* =Rf +)  capyimxVt 5 L0 (Pa+2) ky.
J>0
By Lemma 4.2 of [1], |R*|.: < CA™*. Hence for large X, (AT + )™ =
PE(Y,50(RE)?) with [P35 (RE) |l < CA™F. The asymptotic of tr(AT +
A)~™ from P? is required for the calculation. Note that
1 19

AEHN™" = 555

AT+
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Substitute £ = tz and define formally,

oi(t,6) = (LD T S 0 (€, (6)
(m-Diza

s<—1/2 820

+ Z Ul,—y+(§)v2,l/+(§)]7

—1/2<s<0
$2m-1 10
(t é_) ___(_____ (m— 1) + ’01,,__ U2u )
(m—=1)1" €8¢ 5221/2 s§<;)
+ Z 'Ul’__y*(g),UQ,Vf(é')]
0<s<1/2

following (1, 2]. Applying the same method in [1, 2], one obtains
o] €2m—1

10) 1w PP = [ xslPa)+ [ G 0.0 - V0,6,

where w(Py4) is the local index form of the self-duality operator P4 on X and
the second integral is given by

1
(11) —=(np, + dimker ) + Z arRes1np, (2k),

5(
k>1

where i = 2&_;1:-};T) and the eta function of P, is defined by

ney(2) = Y, |s| sgns,

s€SpecPy\{0}

in which np,(z) is meromorphic in the whole plane with possible simple poles
but holomorphic at z = 0, and the n-invariant of Py, np, = 1p,(0), is well-
defined.

With P; = 0 for ¢t < ¢, the index formula of P4 is given by

; 1
Ind PP = — §(np0 + dimker Py} + E axRes1mp, (2k)
(12) k>1

+ / —Tr FiNFy
X\{t<e} 872 ( )

following from (10) and (11). Define [, & (adP) to be the limit
lim [ cx(adP) = lim SLTr (Fa A Fa).

e=0 fis o e—0 t>e
Theorem 5.1. With the conic metric dt? + t2gy at a point on X, the self-
duality operator PiP is Fredholm with index

~2k

2
/ &y (adP) — (np +mi)+ Y s Resinp, (2k),
x o &4 2k(2k + 1)
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where np,(2) is the eta function of the operator Py and my = dimH11/4’Cc is

the multiplicity of eigenvalue 1/4 of the Laplacian operator A on the coclosed
QUY, adPly) with the twisted connection ag.

Proof. ker Py can be identified with H 11 J4,ce by Corollary 4.5. The result follows
from the above discussion and the method in [1, 2] as well as (12). O

Corollary 5.2. The closed extension Paw of Pa is Fredholm with index

1 —2k
P _ - R 2k
/X exadP) = 3, + ) + 3 gy Resuin ()
+dimW - > dimker(P — ).

—1/2<s<0
Proof. Let W C @4)<1/2 ker(Py — s) be a subspace with
W™ =@_1/2<scoker(Py—s), W' =®1/25s50ker(Po — s).
Note that D(P5’) = D(P4,min) @ W~. By Theorem 4.4, PiP = P, - and
IndPs,w = IndPyg min + dim W = IndPL + dim W — dim W .
O

Let E4(P) be the eigenspace of the operator P with eigenvalue s. Then we
have the following identification (s # —1/2)

(13) ES(PO) = Esl+1/2,cc(*yda0) D Eg(s) (A0)7

where E{ . (+yda,) = {1 € Q : ¥y do,01 = tar,dj¥ o3 = 0}. Foru = (o, ¢) €
E,(P), define a map

F(a7 ¢) = (a - (S + 1/2)_1da0¢7 ¢)

The map F is bijective since the equation Pyu = su is equivalent to A%¢p =
A(s)¢ and

*y dag (0 = (5 +1/2)7dayd) = (s + 1/2)(a — (s +1/2) " da, 9),
d* (a— (s +1/2)"1dep) = 0.

Note that for s = —1/2, E_y j5(Po)=H' (Y, adao)® H°(Y, adao) and Ej 5 (Po) =
B} co(*ydag) ® HO(Y, adao). For —1/2 < s < 3/2, Bs(Py) = HL, ) 5 (*vday)-
Let m} = dim E} , (*yd,,) and m{ = dim E?(A®). Using the above discussion,

t,cc
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one obtains

np(2)= D, sensls| 7

s€SpecPo\{0}
e
s<0 s>0
z 3 —z —z
= —(h! +h%)2 +h°(§) — > mlplsl
§<0,87£—1/2
+Zmi+1/2|3|_z“ Z mg(s)lsl_z+ Z m()J\(s)|s|*Z
>0 s<—1/2 §>3/2
z 2 z -
= —(R' + h%)2 +h0(§) =2 ) miygplslT?
—1/2<8<0
+ﬁ*yda0 (Z) +77_A0(Z)’
where h? = dimker A? and
_ 1
Ty dog (2) = > sgmAlX — 5|7,
A€Spec(*y dag )\ {0}

Maod)= Y w5+ VIT A - |5 - VITA)

AESpecAC\{0}

from the equation A(s) = (s + 1/2)(s — 3/2). The more explicit calculation of
the index will be discussed elsewhere.

Remark. Our eventual goal will be the study of gauge theory type of topological
invariants for the conic 4-manifolds. Up to now, we focus on the analytic
aspects of the linear theory. Deforming the metrics dt? + (t!7")2gy with 0 <
r < 1, the operator P4(r) changes from P4(0) which we have discussed in this
__ 0 *yd, d
paper to Pa(l) = & + drv Oa
extension Py w-(0) of P4(0) changes to Py yw-(1) with the corresponding
. dg
domain {u = ) us(t) : s € Spec(Py(1)),s < 0} for Py(1) = ( *}Cja 0
a
This is precisely the Atiyah-Patodi-Singer global boundary condition for 4-
manifold X with a boundary Y. The index formula is given by [, é;(adP) —
H(npy(1) +dimker Py(1)) from tr(P%(1)Pa(1)) —tr(Pa(1)P;(1)). The last term
2 k>l %Reslnpo (2k) in Theorem 5.1 vanishes since the m = —1 case has
non-residue terms in the calculation.

under the product metric. The closed
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