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THE JUMP OF A SEMI-FREDHOLM OPERATOR
DoNG HAK LEE AND W00 YOUNG LEE

In this note we give some results on the jump (due to Kato [5] and
West [7]) of a semi-Fredholm operator.

Throughout this note, suppose X is a Banach space and write £(X)
for the set of all bounded linear operators on X. A operator T € £(X) is
called upper semi-Fredholm if it has closed range with finite dimensional
null space, and lower semi-Fredholm if it has closed range with its range
of finite co-dimension. It T is either upper or lower semi-Fredholm we
shall call it semi-Fredholm and Fredholm it is both. The indez of a (semi-)
Fredholm operator T is given by

index (T) = n(T) — d(T),

where n(T) = dim7T~!(0) and d(T) = codimT(X). The punctured
neighborhood theorem ([1, 3, 4]) says that if T' € £(X) is semi-Fredholm
then there is € > 0 for which n(T — A) and d(T — A) are both constant
for 0 < |A\| < e. Thus we can define the jump, j(T), of a semi-Fredholm
operator T' € L(X):

, { n(T)—n(T—=A) for 0 < |A] < €if T is upper semi-Fredholm,
(D)= d(T)—d(T—-X) for0< |\ <eif T is lower semi-Fredholm.

Continuity of the index ensures that the jump is unambiguously defined
for Fredholm operators. When T € £(X), we can introduce ([2, 3, 6])

T(X) = () T*(X)
n=1
for the hyperrange and
T=(0) = | J T7™(0)
n=1l
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for the hyperkernel of T: it is clear that both subspaces are invariant
under any operator S on X which commutes with 7. West ([6]) have
shown that if T' € £(X) is semi-Fredholm then

J(T)=0 <= T7(0) C T(X), orequivalently, T71(0) C T*(X).
Thus if j(T') # 0 then there is the smallest integer v such that

T7'0)C T (X) but T710)¢ T*(X).

Now we have a revised version of Kato’s decomposition theorem ([5],
Theorem 4): it was very nearly stated by West ([7]).

THEOREM 1. If T € L(X) is semi-Fredholm then
1)

T=N@T, with N=PN,
=1

where Ty is semi-Fredholm with j(Ty) = 0 and each N; is a cyclic nilpo-
tent with nilpotency n, v < n < k, where k is the smallest integer such
that T~1(0)NT*>°(X) = T~1(0)NT*(X). Furthermore, there is equality

(1.1) J(T) =dim [T7(0)© {T‘I(O)OT""(_X)}].

Proof. Suppose v is the smallest integer such that
T7H0)C T Y(X) but T7(0) ¢ T"(X).

We write

M, =T710)nT*(X).

Then the semi-Fredholmness of T' implies

dim (T7'(0) & M;) < co.
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We can choose a basis of T71(0) © My, {z,,... yZr} in such a way that
z; =T" e;) (1 =1,...,r). Put

X1 =span{e;, T(e:),..., T" e},
Then Kato’s decomposition theorem gives
T= T] S Sa

where T; is a nilpotent acting on X, consisting of r cyclic nilpotent
blocks with each size v such that

0

1 0

0 1 0

o ... 0 1 0

Thus j(T7) = r and j(S) = j(T) — r. We now observe that
T-1(0) = S71(0) @ span {T*(e0) ey,
T"7HX) = $* (X)) @ span {T* 7 (ei)} iy,
T"(X) = S"(X).
We thus have S71(0) C §¥(X). If n is the smallest integer such that
STH0) S S™I(X) but $7N(0) & S™(X),

then evidently, we have v < m. Applying the above process to S and
again continuing this process gives that
(T}
T=NoT, with N=_HAN,
=1

where T is semi-Fredholm with j(Ty) = 0 and each N; is a cyclic nilpo-
tent with nilpotency > v. Furthermore, retracing the steps in the above
argument, we can determine

HT) = dim |T7'(0) o {T71(0) N T°°(X)}].
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CoROLLARY 2. If T € £(X) is upper semi-Fredholm then

(2.1) dim (T — A)~}(0) = dim (T7'(0) N T(X))
for sufficiently small X.

If T is lower semi-Fredholm then
(2.2) codim (T — A)(X) = dim (T(X)* N T~>(0))

for sufficiently small A.

Proof. (2.1) follows at once from (1.1). For (2.2), apply the dual.
We are ready for:

THEOREM 3. If T € L(X) is semi-Fredholm then
T"=08Ty, forn >k,

where k is the smallest integer such that T7Y(0)NT>°(X) = T~'(0) N
T*(X), 0 is the finite dimensional zero operator and Ty is semi-Fredholm
with j(Tp) = 0.

Proof. We first claim that if £ < v then
(3.1) n(TF) = kn(T) and d(T*) = kd(T).

Indeed, for the second equality of (3.1) observe that if T : X — Y and
S :'Y — Z are semi-Fredholm between Banach spaces then there is
1somorphism

(3.2) S(Y)/ST(X) = Y/ (T(X)+57'(0).
Then (3.2) with S = T and T = T* gives

T(X)/THX) ~ X/ (THX)+T7(0)).
If k < v then the inductive step gives

dim X/T*(X) = kdim X/T(X),
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which gives the second of (3.1). For the first, apply the dual to the
second. Thus if j(T) = 0 then if follows from (3.1) that n(T*) = k n(T)
for each k € N. Since j(T — A) = 0 for sufficiently small ), it follows that

kn(T) = kn(T-X) = n ((T-X)*) = n(T* - 4) for sufficiently small .

The last equality comes from the punctured neighborhood theorem. We
thus have

(3.3)
JH(T*) = n(T*) ~n(T* — ) = kn(T) = kn(T) =0 for each k€ N.
Now the required result at once follows from Theorem 1 and (3.3).

COROLLARY 4. If T € L(X) is semi-Fredholm then
JH(T")=n((T)) forn<v.

Proof. Immediate from Theorem 1 and Theorem 3.

The jump of upper semi-Fredholm operators having finite ascent is
only the nullity.

THEOREM 5. If T € L(X) is upper semi-Fredholm then

(5.1) J(T) =n(T) if and only if T has finite ascent.
If T € L(X) is lower semi-Fredholm then
(5.2) J(T)=4d(T) if and only if T has finite descent.

Proof. We observe
(5.3) T has finite ascent k <= T~1(0) N T*(X) = {0}.
Therefore, by (2.1) and (5.3), we have

HT)=n(T) < T~ (0)NT>(X) = {0}
< T7H0)NT*(X) = {0} for some k€ N

(because dim T71(0) < o)

<= T has finite ascent,

which gives (5.1). For (5.2), apply (5.1) to the dual.
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