• Title/Summary/Keyword: Frame Length

검색결과 700건 처리시간 0.023초

G-PON TC 계층 유료부하 내에서 고속 GEM 프레임 동기회로 구현 (Implementation of a High Speed GEM frame Synchronization Circuit in the G-PON TC Sublayer Payload)

  • 정해;권영진
    • 한국통신학회논문지
    • /
    • 제34권5B호
    • /
    • pp.469-479
    • /
    • 2009
  • GEM 프레임은 G-PON 시스템에서 가변 사용자 데이터를 전달하는 수단이며 헤더와 유료부하로 구성된다. 헤더의 HEC 필드는 헤더의 내용을 보호하고 동시에 GEM 프레임 동기를 유지할 목적으로 사용된다. 수신 중에 GEM 프레임 동기를 잃어버리면 다시 동기를 획득 할 때까지 프레임들은 폐기되어야 한다. 따라서 손실되는 프레임의 수를 최소화하기 위해서는 고속의 동기모듈이 필요하다. 본 논문에서는 GEM 헤더에 검출이 불가능한 에러가 나타났을 때 발생하는 프레임 손실을 줄이기 위하여 주 상태머신 이외에 부 상태머신의 사용을 제안하고 이를 구현한다. 또한 헤더의 시작점을 찾는데 있어서 고속이며 동시에 효율적인 병렬 구조를 제안한다. 최종적으로, 제안된 방식은 FPGA를 통해 구현하였고 계측기를 이용하여 검증한다.

Seismic response of NFRP reinforced RC frame with shape memory alloy components

  • Varkani, Mohamad Motalebi;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.285-295
    • /
    • 2022
  • Creation of plastic deformation under seismic loads, is one of the most serious subjects in RC structures with steel bars which reduces the life threatening risks and increases dissipation of energy. Shape memory alloy (SMA) is one of the best choice for the relocating plastic hinges. In a challenge to study the seismic response of concrete moment resisting frame (MRF), this article investigates numerically a new type of concrete frames with nano fiber reinforced polymer (NFRP) and shape memory alloy (SMA) hinges, simultaneously. The NFRP layer is containing carbon nanofibers with agglomeration based on Mori-Tanaka model. The tangential shear deformation (TASDT) is applied for modelling of the structure and the continuity boundary conditions are used for coupling of the motion equations. In SMA connections between beam and columns, since there is phase transformation, hence, the motion equations of the structure are coupled with kinetic equations of phase transformation. The Hernandez-Lagoudas theory is applied for demonstrating of pseudoelastic characteristics of SMA. The corresponding motion equations are solved by differential cubature (DC) and Newmark methods in order to obtain the peak ground acceleration (PGA) and residual drift ratio for MRF-2%. The main impact of this paper is to present the influences of the volume percent and agglomeration of nanofibers, thickness and length of the concrete frame, SMA material and NFRP layer on the PGA and drift ratio. The numerical results revealed that the with increasing the volume percent of nanofibers, the PGA is enhanced and the residual drift ratio is reduced. It is also worth to mention that PGA of concrete frame with NFRP layer containing 2% nanofibers is approximately equal to the concrete frame with steel bars.

스커트 길이와 주가 지수 상관 이론인 헴라인 지수(Hemline index) 이론을 중심으로 한 패션 이론 검증 연구 -1980~2013년을 중심으로- (A Study of Verification on Fashion Theory around Relation Theory of Skirt Length and Stock Index, Hemline Index -Focus on 1980 to 2013 years-)

  • 김선숙
    • 한국의류학회지
    • /
    • 제38권4호
    • /
    • pp.584-597
    • /
    • 2014
  • This study verified the 'Hemline Index' theory by George (1926) and established a new fashion theory frame to forecast future fashion cycles of skirts by analyzing the past fashion cycle of skirts through a diachronic method. Skirt pictures from 1980-2013 (the post-industrialized period of Korea) were analyzed and representative skirt styles, the fashion cycle of skirts and relation between skirt style, length, width and stock index were identified. A total of 1496 pictures in fashion magazine published over 34 years were selected and analyzed using PASW 18.0. The results were: For 34 years, representative skirts styles were mini skirt, midi skirt and long skirt. Fashion trend cycles of skirt length decreased for 10 years and the fashion cycle showed a trend to shorten. Skirt length & stock index related negatively and skirt length & skirt width related positively. All relations revealed significant results. Finally, the 'Hemline Index' theory of George (1926) was verified. Fashion marketers can develop successful and suitable products using a fashion cycle theory based on the results of this study.

재료 및 기하학적 비선형을 고려한 브레이싱된 강뼈대구조물의 최적설계 (The Discrete Optimum Design of Steel Frame Considering Material and Geometrical Nonlinearties)

  • 장준호;박문호;이해경;박순응
    • 한국강구조학회 논문집
    • /
    • 제12권3호통권46호
    • /
    • pp.317-328
    • /
    • 2000
  • 본 연구의 목적은 재료 및 기하학적 비선형을 고려한 고등해석을 이용한 브레이싱된 강뼈대구조물의 최적설계 알고리즘을 개발하는데 있다. 구조물의 해석과정에서 비선형효과를 모두 고려함으로써 기둥의 유효길이 연산이 필요없는 최적설계 알고리즘을 제시하였으며, 전체 구조시스템 및 개별부재의 정보를 이용하여 최적화 하는 2 파라미터형 다단계 최적화 기법을 개발하였다. 해석기법은 단면소성힌지(zero-length plastic hinge) 개념을 이용한 개선된 소성힌지해석법을 수행하였으며, AISC-LRFD '94 규준을 이용하여 최적화 문제를 형성하였다. 본 알고리즘을 브레이싱된 강뼈대구조물에 적용하여 본 연구의 타당성, 효율성, 경제성을 비교검토 하였다.

  • PDF

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

2차 탄성해석을 이용한 강뼈대구조의 초기결함 좌굴설계 (Stability Design of Steel Frames considering Initial Imperfection based on Second-Order Elastic Analysis)

  • 경용수;이창환;김문영
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.465-474
    • /
    • 2008
  • 일반적으로, 보-기둥 부재로 구성된 강뼈대구조물의 설계는 개별부재의 유효좌굴길이를 고려하여 설계기준에서 제시한 안정성 평가식을 적용하고 있다. 그러나 이 방법은 구조물에서 상대적으로 작은 압축력이 적용되는 부재에서는 유효좌굴길이가 커지는 문제가 발생하게 된다. 이러한 문제를 극복하고자 본 연구에서는 대상 구조물의 초기결함(initial imperfection)을 고려한 2차 탄성해석법을 제시한다. 이 방법은 탄성좌굴 고유치해석으로 산정된 좌굴모드 및 좌굴고유치, 개별부재의 축력을 이용하여, 가장 작은 무차원 세장비를 가진 부재를 선정하고, 그 부재에 대하여 기하적, 재료적인 효과가 고려된 설계기준의 기준강도곡선으로부터 좌굴모드에 대한 증폭량을 산정한다. 이렇게 결정된 증폭량을 대상 구조물의 좌굴모드에 증폭시켜 2차 탄성해석을 수행하고, 개별부재의 안정성을 평가한다. 본 방법의 타당성을 확인하기 위하여, 8층 및 4층으로 이루어진 평면 강뼈대구조물에 적용시키고, 설계기준에서 제시하는 안정성 평가법과 비교한다.

Fuzzy logic based estimation of effective lengths of columns in partially braced multi-storey frames

  • Menon, Devdas
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.287-299
    • /
    • 2001
  • Columns in multi-storey frames are presently categorised as either braced or unbraced, usually by means of the stability index criterion, for estimating their effective length ratios by design aids such as 'alignment charts'. This procedure, however, ignores the transition in buckling behaviour between the braced condition and the unbraced one. Hence, this results in either an overestimation or an underestimation of effective length estimates of columns in frames that are in fact 'partially braced'. It is shown in this paper that the transitional behaviour is gradual, and can be approximately modelled by means of a 'fuzzy logic' based technique. The proposed technique is simple and intuitively agreeable. It fills the existing gap between the braced and unbraced conditions in present codal provisions.

Elastic Critical Load and Effective Length Factors of Continuous Compression Member by Beam Analogy Method

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.47-54
    • /
    • 2000
  • The critical load of a continuous compression member was determined by the beam-analogy method. The proposed method utilizes the stress-analysis results of the analogous continuous beam, where imaginary concentrated lateral load changing its direction is applied at each midspan. The proposed method gives a lower bound error of critical load and can predict the span that buckles first. The effective length factors for braced frame columns can be easily determined by the present method, but result in the upper bound errors in all cases, which can lead to a conservative structural design.

  • PDF