DOI QR코드

DOI QR Code

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Bin Huang (School of Civil Engineering and Architecture, Wuhan University of Technology)
  • Received : 2022.06.20
  • Accepted : 2022.09.15
  • Published : 2023.01.25

Abstract

This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Project No. 51578431 and 51978545).

References

  1. Attanasi, G. and Auricchio, F. (2011), "Innovative superelastic isolation device", J. Earthq. Eng., 15(S1), 72-89. https://doi.org/10.1080/13632469.2011.562406
  2. Bae, J.S., Hwang, J.H., Roh, J.H. and Kim, J.H. (2012), "Vibration suppression of a cantilever beam using magnetically tunedmass-damper", J. Sound Vib., 331(26), 5669-5684. https://doi.org/10.1016/j.jsv.2012.07.020
  3. Bortoluzzi, D., Casciati, S., Elia, L. and Faravelli, L. (2015), "Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge", Smart Struct. Syst., Int. J., 16(3), 459-478. https://doi.org/10.12989/sss.2015.16.3.459
  4. Carmona, J.E.C., Avila, S.M. and Doz, G. (2017), "Proposal of a tuned mass damper with friction damping to control excessive floor vibrations", Eng. Struct., 148, 81-100. https://doi.org/10.1016/j.engstruct.2017.06.022
  5. Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., Int. J., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
  6. Casciati, S. (2019), "SMA-based devices: insight across recent proposals toward civil engineering applications", Smart Struct. Syst., Int. J., 24(1), 111-125. https://doi.org/10.12989/sss.2019.24.1.111
  7. Casciati, F. and Giuliano, F. (2009), "Performance of multi-TMD in the towers of suspension bridges", J. Vib. Control, 15(6), 821-847. https://doi.org/10.1177/1077546308091455
  8. Casciati, F., Faravelli, L. and Al, S.R. (2009), "An SMA passive device proposed within the highway bridge benchmark", Struct. Control Health Monit., 16(6), 657-667. https://doi.org/10.1002/stc.332
  9. Chen, J.D., Lu, G.T., Li, Y.R., Wang, T., Wang, W.X. and Song, G. (2017), "Experimental study on robustness of an eddy current-tuned mass damper", Appl. Sci., 7(9), 895. https://doi.org/10.3390/app7090895
  10. Chung, L.L., Wu, L.Y., Huang, H.H., Chang, C.H. and Lien, K.H. (2009), "Optimal design theories of tuned mass dampers with nonlinear viscous damping", Earthq. Eng. Eng. Vib., 8(4), 547-560. https://doi.org/10.1007/s11803-009-9115-3
  11. Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, New York, NY, USA.
  12. Ding, J.C., Huang, B., Lv, H.W. and Wan, H.X. (2020), "Parametric study of SMA helical spring braces for the seismic resistance of a frame structure", Smart Struct. Syst., Int. J., 25(3), 311-322. https://doi.org/10.12989/sss.2020.25.3.311
  13. Enemark, S., Santos, I.F. and Savi, M.A. (2016), "Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs", J. Intell. Mater. Syst. Struct., 27(20), 2721-2743. https://doi.org/10.1177/1045389X16635845
  14. Fang, C., Wang, W., Ji Y.Z. and Yam, M.C.H. (2021), "Superior low-cycle fatigue performance of iron-based SMA for seismic damping application", J. Constr. Steel Res., 184, 106817. https://doi.org/10.1016/j.jcsr.2021.106817
  15. Hashemi, Y.M., Kadkhodaei, M. and Mohammadzadeh, M.R. (2019), "Fatigue Analysis of Shape Memory Alloy Helical Springs", Int. J. Mech. Sci., 161-162, 105059. https://doi.org/10.1016/j.ijmecsci.2019.105059
  16. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T.P. (1997), "Structural control: Past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  17. Huang, B., Zhang, H.Y., Wang, H. and Song, G. (2014), "Passive base isolation with superelastic nitinol SMA helical springs", Smart Mater. Struct., 23(6), 065009. https://doi.org/10.1088/0964-1726/23/6/065009
  18. Huang, B., Lao, Y.M., Chen, J.M. and Song, Y. (2018), "Dynamic response analysis of a frame structure with superelastic nitinol SMA helical spring braces for vibration reduction", J. Aerosp. Eng., 31(6), 04018096. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000923
  19. Huang, B., Lv, H.W. and Song, Y. (2019), "Numerical simulation and experimental study of a simplified force-displacement relationship in superelastic SMA helical springs", Sensors, 19(1), 50. https://doi.org/10.3390/s19010050
  20. Jiang, J.W., Ho, S.C.M., Markle, N.J., Wang, N. and Song, G. (2019), "Design and control performance of a frictional tuned mass damper with bearing-shaft assemblies", J. Vib. Control, 25(12), 1812-1822. https://doi.org/10.1177/1077546319832429
  21. Li, H.N., Liu, M.M. and Fu, X. (2018), "An innovative recentering SMA-lead damper and its application to steel frame structures", Smart Mater. Struct., 27(7), 075029. https://doi.org/10.1088/1361-665X/aac28f
  22. Liu, S.T., Lu, Z., Li, P.Z., Zhang, W.Y. and Taciroglu, E. (2020), "Effectiveness of particle tuned mass damper devices for pile-supported multi-story frames under seismic excitations", Struct. Control Health Monit., 27(11), e2627. https://doi.org/10.1002/stc.2627
  23. Lu, X.L. and Chen, J.R. (2011), "Mitigation of wind-induced response of Shanghai Center Tower by tuned mass damper", Struct. Des. Tall Spec. Build., 20(4), 435-452. https://doi.org/10.1002/tal.659
  24. Lu, Z., Li, K. and Zhou, Y. (2018), "Comparative studies on structures with a tuned mass damper and a particle damper", J. Aerosp. Eng., 31(6), 04018090. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000878
  25. Lv, H.W. (2019), "Experimental study and theoretical analysis of SMAS-TMD system in vibration control of structure", M.S. Dissertation; Wuhan University of Technology, Wuhan, China.
  26. Mishra, S.K., Gur, S. and Chakraborty, S. (2013), "An improved tuned mass damper (SMA-TMD) assisted by a shape memory alloy spring", Smart Mater. Struct., 22(9), 095016. https://doi.org/10.1088/0964-1726/22/9/095016
  27. Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear one-dimensional shape memory material model for use in structural engineering applications", Eng. Struct., 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007
  28. Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys: a review", J. Intell. Mater. Syst. Struct., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
  29. Qian, H., Li, H.N. and Song, G. (2016), "Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads", Smart Mater. Struct., 25(12), 125026. https://doi.org/10.1088/0964-1726/25/12/125026
  30. Qiu, C.X. and Zhu, S.Y. (2017), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. Dyn., 46(1), 117-137. https://doi.org/10.1002/eqe.2777
  31. Sedlak, P., Frost, M., Kruisova, A., Hirmanova, K., Heller, L. and Sittner, P. (2014), "Simulations of Mechanical Response of Superelastic NiTi Helical Spring and its Relation to Fatigue Resistance", J. Mater. Eng. Perform., 23(7), 2591-2598. https://doi.org/10.1007/s11665-014-0906-y
  32. Sherif, M.M. and Ozbulut, O.E. (2018), "Tensile and superelastic fatigue characterization of NiTi shape memory cables", Smart Mater. Struct., 27(1), 015007. https://doi.org/10.1088/1361-665X/aa9819
  33. Song, G., Ma, N. and Li. H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
  34. Soong, T.T. and Spencer, B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
  35. Speicher, M.S., Hodgson, D.E., Desroches, R. and Leon, R. (2009), "Shape memory alloy tension/compression device for seismic retrofit of buildings", J. Mater. Eng. Perform., 18(5-6), 746-753. https://doi.org/10.1007/s11665-009-9433-7
  36. Tian, L., Zhou, M.Y., Qiu, C.X., Pan, H.Y. and Rong, K.J. (2020), "Seismic response control of transmission tower-line system using SMA-based TMD", Struct. Eng. Mech., Int. J., 74(1), 129-143. https://doi.org/10.12989/sem.2020.74.1.129
  37. Wang, W.X., Yang, Z.L., Hua, X.G., Chen, Z.Q., Wang, X.Y. and Song, G. (2021), "Evaluation of a pendulum pounding tuned mass damper for seismic control of structures", Eng. Struct., 228, 111554. https://doi.org/10.1016/j.engstruct.2020.111554
  38. Weber, F. (2014), "Semi-active vibration absorber based on realtime controlled MR damper", Mech. Syst. Signal Proc., 46(3), 272-288. https://doi.org/10.1016/j.ymssp.2014.01.017
  39. Weber, F. and Maslanka, M. (2014), "Precise stiffness and damping emulation with MR dampers and its application to semi-active tuned mass dampers of Wolgograd Bridge", Smart Mater. Struct., 23(1), 015019. https://doi.org/10.1088/0964-1726/23/1/015019
  40. Wong, K.K.F. and Harris, J.L. (2012), "Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy", Struct. Des. Tall Spec. Build., 21(4), 296-310. https://doi.org/10.1002/tal.604
  41. Wu, Q.Y., Dai, J.Z. and Zhu, H.P. (2018), "Optimum design of passive control devices for reducing the seismic response of twin-tower-connected structures", J. Earthq. Eng., 22(5), 826-860. https://doi.org/10.1080/13632469.2016.1264332
  42. Yang, Y.Z. and Li, C.X. (2017), "Performance of tuned tandem mass dampers for structures under the ground acceleration", Struct. Control Health Monit., 24(10), e1974. https://doi.org/10.1002/stc.1974
  43. Zhang, P., Song, G., Li, H.N. and Lin, Y.X. (2013), "Seismic Control of Power Transmission Tower Using Pounding TMD", J. Eng. Mech., 139(10), 1395-1406. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000576
  44. Zhou, P., Liu, M., Li, H. and Song, G. (2018), "Experimental investigations on seismic control of cable-stayed bridges using shape memory alloy self-centering dampers", Struct. Control Health Monit., 25(7), e2180. https://doi.org/10.1002/stc.2180