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Abstract

The critical load of a continuous compression member was detennined by the b就m-analogy method. The proposed method utilizes the 
stress-analysis results of the 즈nalogo나s continuous beam, where imaginary concentrated lateral Io음d changing its direction is applied 승t。즈ch 
midspan. The proposed method gives a lower bound error of critical load and can predict the span that buckles first. The effective length fac
tors for braced frame columns can be easily determined by the present method, but result in the upper bound errors in all cases, which can 
lead to a conservative structural design
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1. INTRODUCTION

In the structural design of a besmi-colunm, the effect of 
axial compressive force, P, is included by multiplying the 
factor 1/ (1-P/Pc) with the beam moment and deflection. 
In the case of a single span beam-column, the elastic criti
cal load, Per is easily determined, whether the sectional 
property of that member is constant or variole along its 
axis. For a multi-span beam-column, however, the conven
tional neutral equilibrium method, or energy principle
based Rayleigh-Ritz method cannot be efficiently applied 
to the determination of critical load. In this case, modified 
slope-deflection method or a numerical method for exam
ple, the finite difference or tiie finite element method, be
comes a useful tool for the determination of critical load or 
tiie stress analysis of a continuous beam-column.

In this paper, the Beam-analogy method is proposed to 
determine -the approximate critical loads of continuous 
compression members. The main idea of the beam analogy 
method is to replace the continuous compression member 
by a continuous beam, to which concentrated lateral loads 
are applied at each mid-span of the multi-span beam. The 
mid-span concentrated loads are made to chsuige their di
rections in order to sim니ate the buckling mode. The re
sults of sti*ess dialysis of the beam me used to calculate 
Kinney's⑶ fixity factors. Finally, the critical load is ex
pressed by fixity factors. The Beam analogy method may 
also be applied to the determination of effective length 
factors ofbraced frame columns.

2. BEAM ANALOGY METHOD

The Beam analogy method can be explained with the 
following simple example. Fig. 1(a) shows a 2-span con
tinuous compression member whose critical load is to be 

determined by the proposed method. The first step of the 
proposed method is to rqjlace the given compression 
member with a continuous beam. Fig. 1(b) shows the 
analogous beam, where the direction of an imaginary con
centrated lateral load, 0 at each mid-span is alternating its 
direction to simulate the buckling mode.

1.5L

(a) Example member(W. F. Chen)

075L . Q75L . Q.5L . 0.5L

Fig. 1. 2-Span continuous memberfunifbrm section)

The second step is the stress analysis of the analogous 
beam( Fig.l(b)). In the present example, the usual slope
deflection method may be conveniently applied to obtain 
end moments and rotation angles at the supports. Fig. 1(c) 
shows tiie stoess analysis results.

The third step of the proposed method is to find 
Kinney's fixity factors⑶ by utilizing the following rela
tionship.
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思=1 一刼 (1)

Where | | denotes the absolute value. The above relation
ship was introduced by the author⑴ to the eigenvalue 
problems of the tapered bars. He also applied Eq. 1 to the 
analysis of single span steel beams⑵ with partially fixed 
ends. In Fig. 1(c), fcB =0.0 by Kinney's definition 
(simply supported ends). When Eq.l is applied to the first 
span AB and to the second span BC at the intermediate 
support BJba and办care determined in the following way.

0.750：= 4成 以 L5Q£?

8 1.5L l-fBA 16E7

0.75
« 0.273 (2-a)

0.75QL 4EI fBC 1.5gZ2 
---------- =-------- ----------- - ----------

8 L \-fBC 16EI

=——=0.200
0.75

3.75
(2-b)

The final step is to determine the critical load or effective 
length factor (K-factor) using the following expressions.

“扁=(】+&)(i+r如)/(?) (3)

"爲L

where X-factor is defined by
K = ((1 + 々)・(1 + /伽)严 (4)

The validity of Eq. 3 can be easily demonstrated ; That is, 
when a single prismatic member is simply supported at its 
both ends, then f 邱 =fpa~ 0.0, by definition. With f 해 = 
ffia= 0.0, Eq. 3 yields P^EI/L2 (K^l.0).
In the same way, PCf=2^EI/l/ is obtained for the member 
with one end simple supported。" 皿 더椅) and the other 
fixed (f ̂ =1.0). Finally, the critical load of the member 
fixed at both its ends = 1.0) is expressed by
4^EI/L2 (K=0.5).

With the fixity factors of Fig. 1(c), Eq. 3 and Eq. 4 
give the following res니ts :

(Span4B)

2 El (%应=(1硕1，273)/京0 
(1.5匕)

El
= 5.584—

r
Kab =1/7(1x1.273) a 0.886

(5-a)

(6-a)

(Spai BC)
2 El(以•屁=(L2)(L00)/謙 

0)

= 11.844—>(^)^ (5-b)
±J

Kbc = 1 시(1XL273) » 0.913 (6-b)

As mentioned earlier, Fig. 1(a) is the ex皿pie member 
chosen by Chen"). He 叫)plied the Neutral equilibrium 
method to obtain, R尸5.89EI/I?, which is approximately 
5.2% la-ger them the result given by Eq. 5(a).

Now above results are to be compared with those by two 
conventional methods.
(Modified slope-deflection method)

Firstly, the Modified slope-deflection method 
(M.S.D.M)(5) will be briefly described. When the axial 
force, P, is considered, the end moments and rotation an
gles of a beam-column are related by the following :

Fig. 2. Deformation of beam-column
El 、

M邱=(—)ap - ^n°a (7-a)
L
EI

M际=(-厂)砂-(afea +a“如) (7-b)
k-t

First, these equations mb applied successively to Fig. 
1(a). Next, the moment equilibrium conditions at the ex
ternal and intermediate supports allows one to obtain the 
following matrix equation:

anI / 1.5 ap/1.5 o" 6

a^/1.5 (%"L5 + %) «f ♦ « -=・ 0 • (8)

0 a{ 0

Where % and % are so-called Merchant's stability fimc-
tions defined by

a 虹a -如
(9-a,b)

n I' f宀；
with

1 
如"(也)2 (1-kLcotkL) (10-a)

虹~ （成，）2 (kL esc kL-Y) (10-b)

kL = y/pL2/EI (10-c)

Oni and % are Eq. 9 with k]L=1.5kL
The characteristic equation for critical load is obtained 

from Eq. 8. That is :

/1.5 Oyj/1.5 0

det(Zyj/1.5 (awl/1.5 + an) af = 0 (11-a)

_ 0 af %
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when expanded

知 으丄
1.5 1.5

5”끙%“一끔心。(H-b)

The least root satisfying Eq. 11(b) is found by a trial and 
error procedure, which yields kL=2.426S and 
PcK.888EI/必 by Eq. 10(c). This critical load coincides 
with that of above mentioned result of Chen.
(Finite element method)

Frequently used finite element gf/rod(F.E.M)⑴⑹⑺ will 
also be briefly described. Fig. 3 shows an element of a 
beam-column subjected to constant axial fbrcej* and a set

(a) Element forces

Y
(b) Element displacements

Fig. 3. Beam-column element

nodal forces {«}. In Fig. 3, {切 denotes nodal displace
ment vector corresponding to {q}. The element stiffiiess 
matrix, [A] combines {q} and {切 in the following form.

{아그回㈣ 因*广‘俱 (⑵

in which

]2 Symm.

, El -61 4l2
wb=—

I5 -12 61 12

_-6Z 2Z2 61 8Z2

(13-a)

18 Symm.

, 1 -1.5Z 2l2
wg=—

g 15/ -18 1.5Z 18

-1.5Z 0.5 户 1.5Z 2Z2

(13-b)

In the above two equations, [A]b denotes ttie flexural( or 
bending ) stiffness matrix and (瓦 is called geometric( or 
initial stress) stiffness matrix. As one co니d see in Eq. 12, 
flexural stiffness is decreased, due to the axial compressive 
force, P.

The structural stiffness matrices for the entire member 

are obtained by transforming the individual element matri
ces from element to structural coordinates and then by 
assembling the resulting matrices. Finally, boundary condi
tions should be applied to the assembled matrices. The 
procedures are easily found from textbooks on the finite 
element method or structural stability⑸⑹⑺.hence, a de
tailed explanation will be omitted.

The external force vector, {Q\ and corresponding dis
placement vector, {A} are related by

{Q} = [K] {시 (14)

where [K], the structure stiffness matrix obtained after the 
application of boundary conditions, takes the form

[K] = [K] -P[K] (15)
b g

With external force vector, {Q}={0}, Eq.(14) and (15) 
constitute a typical eigenvalue problem.

([K] -P[K] ){A} = {0} (16)
b g

To obtain the least eigenvalue (here, the elastic critical 
load corresponding to the first mode of buckling) by com
puter-aided iteration method, Eq.(16) should be trans
formed into the following form

([K]：[K] - &邛{A} 그 {0} (17)
b g P

where [7] is the unit(or identity) matrix.
When the finite element method is applied to Fig. 1(a) 

one can obtain nearly the same critical load as that by the 
modified slope-deflection method. Here, it is observed that 
the representative two methods, (the one, an analytical 
method or modified slope-deflection method and the other, 
a numerical or finite element method) can result in the 
smne value of the elastic critical load.

The procedures necessary to obtain the final result by 
above mentioned methods involve complicated calcu
lation when one relies on hmd calculation. Furthermore,

(a) Given continuous member
I 3Q |Q

" t 5 多一 M i D

L o. 6L -」一0.5，」 L-Q5Z」

(b) Analogotis beam
0 儿그。.，砧2 払=0 心 fK=0.0

I
 2£l 〜_二二~、-一 El

广'一一＞스 —바 戶、_ —— 一/泸

4 日心22花 C“mi

Kv=。66 Km=083 Kd 92

(c) FEfy factors and K-foctors

Fig- 4. 3-Span continuous member 
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these methods can neither predict the span that buckles 
first, nor determine the effective length factor, K, of each 
span.

For a clearer explanation of the proposed method, an
other example of 3-span continuous compression member 
is adopted. Fig.4 (b) shows the first step of proposed 
method. The second step, that is, the stress analysis of the 
jmalogous beam shown in Fig.4(b) can proceed in the 
following ways(the slope-deflection method is adopted).

(End moment equations)

2EI 、 3.6QL QL
mab =?77(2°8)------— = -5.7792(—)

1Q丄 o o
,, 2EI 2QL QL、
M bc - -------------- ------------- = +0.7585(—)

2EI 2QL QL、Mcb = —(6>s + 20c)- -亍=-0.5604(%-)

2EI QL QL、Mcd = — (20c + 盼 _ %- = +0.5604(%-)

2EI QL
mdc = 一厂伊 c +2^d) + —= 0.0

(18-a)

(18-b)

(18-c)

(18-d)

(18-e)

yr 3OZ L= 0， %+诺c +eD=^■— (19-b)
8 2EI

■Di QL L£虬=0, E"으布

The solution of the simultaneous equations yields Oie 
following rotation an옹les.

(19-c)

(20-a)

QI?、 
0c = 72.8(——) 

84857
(20-b)

QU、 
勺 =-69.2( -쓰一) 

848£7
(20-c)

(End moment)
Above rotation uigles are substituted into slope

deflection equations to obtain the results shown at the 
right-hand sides of the same equation.

The third step is the determination of fixity factors by 
using Eq.(l). In the present problem

0,758501 8£7 /以 69.30?

8 1.2Z i-fBA 848成

(Joint equation) ... = 0.1482 (21-a)

'^匚 M b = 0, —0g + .. ------- ------------ (19-a) O.75850Z 4EI fBC 69.3QZ?
1-2 8 2EI 8 L 1 - /bC 848A/
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fBC = 0.2248 (21-b)

0.56040, _ 4EI fCB 62.90?

8 L \-Jcb 848E7

•- /cb 그 /cd =°.191O (21-c)
The fixity factors are given in Fig. 4(c). The last step is 

to find the A-factor and die critical local of each span by 
applying Eq.(3) and (4).

Span AB:
Kab = {(1 +1)(1 + 0.1482)}t” a 0.66

수 QEI)
(3%)如 =2x1.1482—느七

(1.2L)2

、 El
•••아诲』广1。・49玲 (22-a)

L
Sp 取! BC:

Kbc ={(L2248)(1.191)}~°s ® 0.83

, 、 수 El
(2Pcr)BC = 1.2248x1.191-^-

^7.198? (22-b)

Span CD :
Kcd ={(l.^lXl)}-0-5 저 0.92

z 、 /El El
(PQcd = L191^ 저 11.754万 (22-c)

Lj L
Eq. (22) is the final step, where one can easily see that the 
member of span BC may buckle under the magnitude of 
load, 7.198EI/I}.

The above-mentioned modified slope-deflection method 
is to be 叩plied to the member of Fig.4(a). When Eq(7-a) 
and (7-b) are applied to this member, one obtains

M BC = ~(an2^B + a/2^c) (23-a) 
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where a차, a^, — are Merchant's stability functions (see 
Eq. 10) with

kL =加?际 k〔L = J3kL, k2L = 4ikL

To obtain a characteristic equation, one can start with 
Mac =0 to obtain 6b =-使丿％ Then, the moment 
equilibrium at the support 瓦(》农=0) and 
give tiie following matrix equation

(5anl/3 + an2) afl [이」 

af2 an2+(an ~af)/an 门謨

(24) 
From the above equation, one gets tiie characteristic 

equation
/ 3 + %)• [a”？ 十«#—#)/%]

-(5 )2=0 (25)

The least root satisfying tiie above equation is found to be 
kL=2.72787, gives the elastic critical load

Pcr =7.441EI/I)

The proposed beam analogy method (B.A.M.) can be 
easily applied to multi-span continuous con屮ression 
members without regard to changes in the sectional prop
erties or the lengths of each span. Some of the critical 
loads of four-span continuous compression members m 
shown in Table 1. In this table, the boundary condi- 
tions(B.C) are either a fHctio이ess hinge (fa =0.0) or a 
fixed end (fa =1.0). When compared with results by F.E.M 
or modified slope deflection method, the beam analogy 
method (B.A.M) gives lower boundary errors for critical 
loads. In the column “AB” in the parenthesis
denotes that the AB span buckles first. For example, (DE) 
means that span (DE) will buckle first under the given 
conditions.

3. ^FACTORS FOR BRACED COLUMNS

In the practical design of framed columns, A-factor 
concept (rather thwi elastic critical load) is widely used. 
Several authore(11)(12) have proposed diflEerent methods of 
X-factor determination for friuned columns. Until today, 
however, no unified method is available. Now, the pro
posed method can be applied to the determination of effec
tive length factors for multi-story braced frame columns. 
In the braced frames of Fig 5, columns are not permitted 
to move horizontally and so they can be modeled as a con
tinuous member ofFig. 5(c).

Actually, Fig. 5 is the braced frame and its modeling ex
ample was chosen by Hellesland<8) for effective length 
factors. Helleslan시s A-factors for first and second story 
columns are K^O.656 and K2=0.928, respectively, if one 
assumes Lf= L2, Pf= 2P2 in Fig. 5(c). Meanwhile, the 
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beam analogy method 叩plied to Fig. 5(c), gives 
Kf^,707(error, +7.8%) andiT f=1.00(error, +7.8%).

Fig. 6 shows a two-story steel frame chosen by McCor- 
for its effective length 曲tor determination. He 

adopted AISC'S Alignment chart, which is based on the 
following equation.
Ga •잉 勿/K

一 + I---------------- Hl---------------------- )
2 tan(;r/K)

2tan(0.5 勿/K)
+ ——1---------- !一 = 1.0 (26)

지 K

4

with

E(으% 
G =a L 

a “El
早砂

_ sum of column stiffness at joint a 

sum of beam stiffness at joint a 

(27-a) 

changes in the manner of Fig. 7(a). Fig. 7(b) shows the 
»ialogous beam. The stress analysis results from the 
slope-deflection method are given by Fig. 7(c). Finally, the 
effective length factor for each column detennined by Eq.
4 are shown in Fig. 7(d).

. a * , P 기 L—'-…
A즈 *…. 丄…，华B / 尊 C

卜——一丄4------------ h_______ 4_______ I
(a) Assumed cdumn load

(b) Anak^ous benn

Ma=0.0 M^i2.78QU88 Mc^0.0
9^=7.56QI?/88EI

(c) Absolute end moments & rotation angles

_ sum of column stiffness at joint § 

sum of beam stiffness at joint p

A3WZ的A

fHB=0.0
二二£ 

"後 gg78 ―B
如=0336 Jcb=0.0
fK=0297

(d) Fixity factors & K-bctors

(27-b)

The G-factors for each joint determined by Eq. 27 are 
given in the Fig. 6(b) proposed by McCormac.
Finally, the K-factors satisfying Eq. 26 can be found by a 
trial and error procedure. The least roots of K for the col
umns are also given in Fig. 6(b).

Fig. 7. Analogous Beam
The A-factor for the first story gives 13% error when 

compared with the result by the Alignment chart. But for 
the second-story column, the proposed method yields laige 
upper bound errors, which can be acceptable as far as the 
actual structural design is concerned.
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10.0'

W16X 36

W8X 24
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W16 X 57
W8X 40 W8X 24
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W8X 24 W8X 40 W8X 24
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e « 1 4

12.d

(a) Floor plan

써----- *
1 .i. --------T
1
1

i
wails 22Jem |

J. F3% 曲1
\ *님一& 11

■l1 'I1 '1'
卜 86 + W___ 』

Fig. 6 (a). Two story frame

（金匚— /E、 _/tA
哗©5瑚 申G/wO.328

KebO.653 KgO.625 KsO.626

_ 一 _ 冶^
서).380 fGM.272 *>GM.26O

KM.787 Kq&・0.765 Kg所0.763

gjGi-10.00 @Gd-10.00 @Gg»10.00

Fig. 6 (b). G-foctors & K-foctors

Now, the proposed method is to be applied to this &we 
witii tiie assumption that the total load of each story Fig. 8. Design example
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Fig. 8 shows a design exan耳)le ofbraced columns. This 
design example is adopted from Steel Designer's Man
ual'^. In the original paper, Jf-factors assume K넉),8 for 
the lower two-story columns and K^O. 7 for the remaining 
upper story columns. Fig. 9 shown on the final page of 也is 
paper shows an analogous beam, the stress analysis, and 
the K-factors for the design example columns. As can be 
seen in Fig. 9(c), the proposed method gives slightly larger 
values for the fi-fectors. For this reason, the proposed 
method, when applied to braced columns, will result in a 
conservative design.

4. CONCLUSION

Contrary to conventionally used analytical or numerical 
methods, beam analogy method requires only easy hand 
calculations for the determinations of elastic critical load 
and /【-factors of a continuous compression member. Even 
in tiie cases of continuous compression members with 
variable span, and sectional dimensions and also with dif
ferent boundary conditions, the proposed method can pre
dict the span that buckles first.

The beam analogy method gives lower-bound errors of 
critical loads when compared with those by conventional 
methods. Meimwhile K-factors for the braced frame col
umns by proposed method are larger tiian those by AISC's 
dignment chart, and upper-bound errors of effective length 
factors, which lead to a conservative design of either con
tinuous compression members or multi-story braced col
umns.
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