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Abstract

The crilical load of a continuous compression member was determined by the beam-analogy method. The proposed methed utilizes the
siress-analysis results of the analogous continuous beam, where imaginary concentrated laterat load changing its direction is applied at each
midspan. The proposed methad gives a lower bound error of critical load and can predict the span that buckles first. The effective length fac-
tors for braced frame.columns ¢an be easily determined by the present method, but result in the upper bound errors in all cases, which can

foad 10 a conservative structural design
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1. INTRODUCTION

In the structural design of a beam-column, the effect of
axial compressive force, P, is included by multiplying the
factor 1/ (1-P/P,) with the beam moment and deflection.
In the case of a single span beam-column, the elastic criti-
cal load, P, is easily determined, whether the sectional
property of that member is constant or variable along its
axis. For a multi-span beam-column, however, the conven-
tional neutral equilibriurn method, or energy principle-
based Rayleigh-Ritz methed cannot be efficiently applied
to the determination of critical load. In this case, modified
slope-deflection method or a numerical method for exam-
ple, the finite difference or the finite element method, be-
comes a useful tool for the determination of critical load or
the stress analysis of a continuous beam-column,

In this paper, the Beam-analogy method is proposed to
determine -the approximate critical loads of continuous
compression members. The main idea of the beam analogy
method is to replace the continuous compression member
by a continuous beam, to which concentrated lateral loads
are applied at each mid-span of the multi-span beam. The
mid-span concentrated loads are made to change their di-
rections in order to simulate the buckling mode. The re-
sults of stress analysis of the beam are used to calculate
Kinney's™ fixity factors. Finally, the critical load is ex-
pressed by fixity factors. The Beam analogy method may
also be applied to the determination of effective length
factors of braced frame columns.

2. BEAM ANALOGY METHOD

The Beam analogy method can be explained with the
following simple example. Fig. 1(a) shows a 2-span con-
tinuous compression member whose critical load is to be

determined by the proposed method. The first step of the
proposed method is to replace the given compression
member with a continuous beam. Fig. 1(b) shows the
analogous beam, where the direction of an imaginary con-
centrated lateral load, @, at each mid-span is alternating its
direction to simulate the buckling mode.
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Fig. 1. 2-Span continuous member(uniform section)

The second step is the stress analysis of the analogous
beam( Fig.1(b) ). In the present example, the usual slope-
deflection method may be conveniently applied to obtain
end moments and rotation angles at the supports. Fig. 1{c)
shows the stress analysis results.

The third step of the proposed method is to find
Kinney's fixity factors® by utilizing the following rela-

tionship.
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g =1=fp (1)
Where | | denotes the absolute value. The above relation-
ship was introduced by the author” to the eigenvalue
problems of the tapered bars. He also applied Eq. 1 to the
analysis of single span steel beams® with partially fixed
ends. In Fig.1(c), fz™ fcz =0.0 by Kinney's definition
(simply supported ends). When Eq.1 is applied to the first
span AB and to the second span BC at the intermediate
suppott B, fz4 and fpcare determined in the following way.
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The final step is to determine the critical load or effective
length factor {K-factor) using the following expressions.

El
(P )ap = (14 frg X1+ f,,a)zz(F] ) (3)

2 ( El J
KL )

where K-factor is defined by
K={(+ )+ S ™ @)

The validity of Eq. 3 can be easily demonstrated ; That is,
when a single prismatic member is simply supported at its
both ends, then f .z = fa;= 0.0, by definition. With £ g =
Spa= 0.0, Eq. 3 yields P, ~#EVL’ (K=1.0).
In the same way, P,=2#El/L’is obtained for the member
with one end simple supported(f o5 =0.0) and the other
fixed (f go=1.0). Finally, the critical load of the member
fixed at both its ends (f o5 = fpa = 1.6) is expressed by
4EVL’ (K=0.5).

With the fixity factors of Fig, 1(¢), Eq. 3 and Eq. 4
give the following results :

(Span AR)
()5 = (LOY12T3)T* ——
(1.5L)
Er
= 5.584{‘—2 (5-a)

K= lf‘f(l x1.273) » 0.886 (6-a)

(Span BO)

(P pe = (L2)(L00)72 -
(L)

El
= 11.{~;44L—2 >(P) s  (5b)

Kpe =1/4(1x1.273) ~ 0913  (6-b)

As mentioned earlier, Fig. 1(a} is the example member
chosen by Chen'”. He applied the Neurral equilibrium
method to obtain, P,=5.89EI/L’, which is approximately
5.2% larger than the result given by Eq. 5(a).

Now above results are to be compared with those by two
conventional methods.

(Modified slope-deflection method)

Firstly, the Modified slope-deflection  method
(M.S.D.M)® will be briefly described. When the axial
force, P, is considered, the end moments and rotation an-
gles of a beam-column are related by the following :

Fig. 2. Deformation of beam-column

EI
Maﬂ = (?)aﬁ * (O!nga + a}»eﬂ) (7’a)

El '
My, = (7),,,, (a8 +a,by) (7-b)

First, these equations are applied successively to Fig.
1(a). Next, the moment equilibrium conditions at the ex-
ternal and intermediate supports allows one to obtain the
following matrix equation;

a,/15 az/1.5 0] 4, Y
an/ls (a,/15+a,) a;[{87=10r (8)
0 a; a, | |é 0

Where a, and gy are so-called Merchant's stability func-
tions defined by

¢n ¢
o, = , Qo= (9-a,b)
bi-9:" T 4l-¢:
with
1
= 1- kLcot kL 10-
¢, (“)2( cot kL) (10-a)
|
¢, = o (kL csc kL — 1) (10-b)
KL =PL*IE] (10-c)

(7 M1 and an are Eq 9 with k;L=I.5kL
The characteristic equation for critical load is obtained
from Eq. 8. That is :

a, /15 a;,/1.5 0
detf @,)/1.5 (@, /15+a,} a;|=0 (Il-a)

0 o a,
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when expanded

2y anl

1.5 ( 1.5 ( ) 1 S
The least root satisfying Eq. 11(b) is found by a #rial and
error procedwre, which vyields AkL=2.4265 and
P.=5.888EL1’ by Eq. 10(c). This critical load coincides
with that of above mentioned result of Chen.
(Finite element method)

Frequently used finite element method(F.EM)CXO wil
also be briefly described. Fig. 3 shows an element of a
beam-column subjected to constant axial force, P and a set

9
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Qaf

—Lal =0 (11-b)
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Fig. 3. Beam-column element

nodal forces {g}. In Fig. 3, {&} denotes nodal displace-
ment vector corresponding to {q}. The element stiffness
matrix, [k] combines {g} and {&} in the foltowing form.

tg} =[5}, [h]=[k] —P[’t]‘g (12)

in which
12 —
E; -6l 4
(&1, = Bl-12 & 12 (13-2)
-6l w4 & 8-
and
18 Symm.
k], - 1 |- 21 (135)

15/ —18 1.5 18
-1.51 0s?® 15 27

In the above two equations, [k}, denotes the flexural{ or
bending ) stiffness matrix and [£];, is called geometric( or
initial stress) stiffness matrix. As one could see in Eq. 12,
flexural stiffness is decreased, due to the axial compressive
force, P.

The structural stiffness matrices for the entire member

are obtained by transforming the individual element matri-
ces from element to structural coordinates and then by
assembling the resulting matrices. Finally, boundary condi-
tions should be applied to the assembled matrices. The
procedures are easily found from textbooks on the finite
element method or structural stability®? ; hence, a de-
tailed explanation will be omitted.

The external force vector, {(} and corresponding dis-
placement vector, {4} are related by

{0} = [K}a) (14)

where [X], the structure stiffness matrix obtained after the
application of boundary conditions, takes the form

[K}=[X] —P[K]g (15)

With extemnal force vector, {Q}={0}, Eq.(14) and (15)
constitute a typical eigenvalue problem.

(X1, -P[K}g){A} = {0} (16)

To obtain the least eigenvalue (here, the elastic critical
load corresponding to the first mode of buckling) by com-
puter-aided iteration method, Eq.(16) should be trans-
formed into the following form

- |
(X1, '[K]‘g - pUbia) = {0} a7

where [/] is the unit(or identity) matrix.

When the finite element method is applied to Fig. 1(a)
one can obtain nearly the same critical load as that by the
modified slope-deflection method. Here, it is observed that
the representative two methods, (the one, an analytical
method or modified slope-deflection method and the other,
a numerical or finite element method) can result in the
same value of the elastic critical load.

The procedures necessary to obtain the final result by
above mentioned methods involve complicated calcu-
Iation when one relies on hand calculation. Furthermore,
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Fig. 4. 3-Span continuous member
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these methods can neither predict the span that buckles
first, nor determine the effective length factor, K, of each
span.

For a clearer explanation of the proposed method, an-
other example of 3-span continuous compression member
is adopted. Fig.4 (b) shows the first step of proposed
method. The second step, that is, the stress analysis of the
analogous beam shown in Fig.4(b) can proceed in the
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0L L

Y M. =0, 6,148, +8, 2%'5 (19-b)
L oL

DM, =0, 0C+29D=-Q—— (19-c)
8 2E/

The solution of the simultaneous equations yields the
following rotation angles.
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Fac = 02248 21-b)
0.56040L 4EI fop  6290L
8 L 1-fcp S48EI

The fixity factors are given in Fig, 4(c). The last step is
to find the K-factor and the critical local of each span by
applying Eq.(3) and (4).

Span AB :
K 45 = {(1+1)(1+0.1482)) " ~ 0.66
% (2ED
(3P,) = 2x1.1482——~
i (1.21)°
EI
AP g 10.493L—2 (22-a)
Span BC':
Kpe = ((1.2248)(1.191)}*° ~ 0.83
2
n El
(22,) 5o = 1.2248x1.191 7
EI
R YO 7.198? (22-b)
Span €D
Kep = (119010} = 0.92

nlEl

L2
Eq. (22} is the final step, where one can easily see that the
member of span BC may buckle under the magnitude of
load, 7.198EVI*.

The above-mentioned modified slope-deflection method
i8 1o be applied to the member of Fig.4(a). When Eq(7-a)
and (7-b) are applied to this member, one obtains

(P, )ep =1.191

EI
~11.754—  (220)
L

El
El 5

Mg, = ?(;a,,la,,) (23-b)
El

M = _L— (as,05 + a,,9,) (23-¢)
ET

Mo, = T(anec + aIHD) (23-d)
El

where @;, ap, = are Merchant's stability functions (see
Eq.10) with

KL = \PI2[EL, kL =LSKL, koL =~2kL

To obtain a characteristic equation, one can start with
Mpe =0 to obtain & = -(as/a, )B. Then, the moment
equilibrium at the support B{IMz=0) and C,(ZM=0),
give the following matrix equation

(e, /3 +a,,) a, 6,1 (o
a a, +{a, —ai)a,||6.] 0

24
From the above equation, one gets the characteristic
equation

(Set, 13+ 2,,) (@, +(a) —at)/a,]
~(a;)* =0 (29

The least root satisfying the above equation is found to be
kL=2.72787, gives the elastic critical load

P.,=7.441El1L?

The proposed beam analogy method (B.A.M.) can be
easily applied to multi-span continuous compression
members without regard to changes in the sectional prop-
erties or the lengths of each span. Some of the critical
loads of four-span continuous compression members are
shown in Table 1. In this fable, the boundary condi-
tions(B.C) are either a frictionless hinge (f, =0.8) or a
fixed end (f; =1.0). When compared with results by FEAM
or madified slope deflection method, the beam analogy
method (B.A.M) gives lower boundary errors for critical
loads. In the column "B.AM", “AB” in the parenthesis
denotes that the AB span buckles first. For example, (DE)
means that span ¢{DE) will buckle first under the given
conditions.

3. K-FACTORS FOR BRACED COLUMNS

In the practical design of framed columns, X-factor
concept (rather than elastic critical load) is widely used.
Several authors"'X1?) have proposed different methods of
K-factor determination for framed columns. Until today,
however, no unified method is available. Now, the pro-
posed method can be applied to the determination of effec-
tive length factors for multi-story braced frame columns.
In the braced frames of Fig. 5, columns are not permitted
to move horizontally and so they can be modeled as a con-
tinuous member of Fig. 5(c).

e
El,c=Elyp Elc
= ] 2z k | I 2&
2 2 EF, L
L 2kcol. 2
Ebyp ? k=2 S22
1 ] ] ] Lo
I,
L . L P ol J b
- w ] bA=
(a) Type 1 {(b) Type 2 (c) Idealization

Fig. 5. Braced frames and modeling

Actually, Fig. § is the braced frame and its modeling ex-
ample was chosen by Hellesland® for effective length
factors. Hellesland's K-factors for first and second story
columns are K,=0.656 and K,=0.928, respectively, if one
assumes L,= L,, P= 2P, in Fig. 5(c). Meanwhile, the
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beam analogy method applied to Fig. 5(c), gives
Ky=0,707(error, +7.8%) and K =1.00(error, +7.8%,).

Fig. 6 shows a two-story steel frame chosen by McCor-
mac'® for its effective length factor determination, He
adopted AISC'S Alignment chart, which is based on the
following equation.

G,'Gy n G,+G wlK
L +(———EN- )
4 K 2 tan(7 / K)
2tan(0.57/ K)
L L2EOTTR) o 26
nlK
with
z =
G == ( L )e _ sum of column stiffness at joint a
“ T E{ ) sum of beam stiffness at joint o
e LY
(27-a)
5
. = ﬂ( L )e _ sum of column stiffness at joint 8
# 5 (ﬂ ) sum of beam stiffness at joint
b
8 L

(27-b)

The G-factors for each joint determined by Eq. 27 are
given in the Fig. 6(b) proposed by McCormac. .
Finally, the K-factors satisfying Eq. 26 can be found by a
trinl and error procedure. The least roots of X for the col-
umns are also given in Fig. 6(b).
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Fig. 6 (b). G-factors & K-factors

Now, the proposed method is to be applied to this frame
with the assumption that the total load of each story

changes in the manner of Fig. 7(a). Fig. 7(b) shows the
analogous beamn. The stress analysis results from the
slope-deflection method are given by Fig. 7(c). Finally, the
effective length factor for each column determined by Eq.
4 are shown in Fig. 7(d).
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{d) Fixity factors & K-factors

Fig. 7. Analogous Beam
The K-factor for the first story gives 13% emor when
compared with the result by the Alignment chart. But for
the second-story column, the proposed method yields large
upper bound errors, which can be acceptable as far as the
actual structural design is concemed.
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Fig. 8 shows a design example of braced columns. This
design example is adopted from "Stee! Designer's Man-
ual®, In the original paper, K-factors assume K=8.8 for
the lower two-story columns and K=0.7 for the remaining
upper story columns. Fig. 9 shown on the final page of this
paper shows an analogous beam, the stress analysis, and
the K-factors for the design example columns. As can be
seen in Fig. 9(c), the proposed method gives slightly larger
values for the K-factors. For this reason, the proposed
method, when applied to braced columns, will result in a
conservative design.

4. CONCLUSION .

Contrary to conventionally used analytical or numerical
methods, beam analogy method requires only easy hand
calculations for the determinations of elastic critical Joad
and K-factors of a continuous compression member. Even
in the cases of continuous compression members with
variable span, and sectional dimensions and aiso with dif-
ferent boundary conditions, the proposed method can pre-
dict the span that buckles first.

The beam analogy method gives lower-bound errors of
critical loads when compared with those by conventional
methods. Meanwhile X-factors for the braced frame col-
umns by proposed method are larger than those by AISC's
alignment chart, and upper-bound errors of effective length
factors, which lead to a conservative design of either con-
tinuous compression members or multi-story braced col-
umns.
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