• Title/Summary/Keyword: Fractional order systems

Search Result 58, Processing Time 0.023 seconds

SOLUTIONS OF FRACTIONAL ORDER TIME-VARYING LINEAR DYNAMICAL SYSTEMS USING THE RESIDUAL POWER SERIES METHOD

  • Mahmut MODANLI;Sadeq Taha Abdulazeez;Habibe GOKSU
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.619-628
    • /
    • 2023
  • In this paper, the fractional order time-varying linear dynamical systems are investigated by using a residual power series method. A residual power series method (RPSM) is constructed for this problem. The exact solution is obtained by the Laplace transform method and the analytical solution is calculated via the residual power series method (RPSM). As an application, some examples are tested to show the accuracy and efficacy of the proposed methods. The obtained result showed that the proposed methods are effective and accurate for this type of problem.

A GENERALIZATION OF THE KINETIC EQUATION USING THE PRABHAKAR-TYPE OPERATORS

  • Dorrego, Gustavo Abel;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.401-416
    • /
    • 2017
  • Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have provided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at presenting solutions of certain general families of fractional kinetic equations using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. [21].

Study of Winding Method to Reduce Stray Loss and Stator Core Vibration of Synchronous Machine

  • Hiramatsu, Daisuke;Sutrisna, Kadek Fendy;Ishizuka, Hiroaki;Okubo, Masashi;Tsujikawa, Kazuma;Ueda, Takashi;Hachiya, Hideyuki;Mori, Junji;Aso, Toshiyuki;Otaka, Toru
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • The fractional slot windings are widely used in rotating machine in order to increase the flexibility of design and improve the voltage waveform. However, the MMF wave of fractional-slot windings are found to contain unique harmonic component, which are designated as even order space flux harmonics, fractional number flux harmonics, or both. They may cause stray loss and stator core vibration. This paper proposes new winding methods "novel interspersed windings" and "expanded group windings" to reduce these harmonics. The advantages of two proposed windings are verified by using numerical analysis and measurement test of winding model.

REGULARITY FOR FRACTIONAL ORDER RETARDED NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Cho, Seong Ho;Jeong, Jin-Mun;Kang, Yong Han
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1019-1036
    • /
    • 2016
  • In this paper, we study the existence of solutions and $L^2$-regularity for fractional order retarded neutral functional differential equations in Hilbert spaces. We no longer require the compactness of structural operators to prove the existence of continuous solutions of the non-linear differential system, but instead we investigate the relation between the regularity of solutions of fractional order retarded neutral functional differential systems with unbounded principal operators and that of its corresponding linear system excluded by the nonlinear term. Finally, we give a simple example to which our main result can be applied.

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

A PREDICTOR-CORRECTOR METHOD FOR FRACTIONAL EVOLUTION EQUATIONS

  • Choi, Hong Won;Choi, Young Ju;Chung, Sang Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1725-1739
    • /
    • 2016
  • Abstract. Numerical solutions for the evolutionary space fractional order differential equations are considered. A predictor corrector method is applied in order to obtain numerical solutions for the equation without solving nonlinear systems iteratively at every time step. Theoretical error estimates are performed and computational results are given to show the theoretical results.

On Narrowband Interference Suppression in OFDM-based Systems with CDMA and Weighted-type Fractional Fourier Transform Domain Preprocessing

  • Liang, Yuan;Da, Xinyu;Wang, Shu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5377-5391
    • /
    • 2017
  • In this paper, we propose a new scheme to suppress the narrowband interference (NBI) in OFDM-based systems. The scheme utilizes code division multiple access (CDMA) and weighted-type fractional Fourier transform (WFRFT) domain preprocessing technologies. Through setting the WFRFT order, the scheme can switch into a single carrier (SC) or a multi-carrier (MC) frequency division multiple access block transmission system. The residual NBI can be eliminated to the maximum extent when the WFRFT order is selected properly. Final simulation results show that the proposed system can outperform MC and SC with CDMA and frequency domain preprocessing in terms of the narrowband interference suppression.

A New Approach for the Analysis Solution of Dynamic Systems Containing Fractional Derivative

  • Hong Dong-Pyo;Kim Young-Moon;Wang Ji Zeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.658-667
    • /
    • 2006
  • Fractional derivative models, which are used to describe the viscoelastic behavior of material, have received considerable attention. Thus it is necessary to put forward the analysis solutions of dynamic systems containing a fractional derivative. Although previously reported such kind of fractional calculus-based constitutive models, it only handles the particularity of rational number in part, has great limitation by reason of only handling with particular rational number field. Simultaneously, the former study has great unreliability by reason of using the complementary error function which can't ensure uniform real number. In this paper, a new approach is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of single-degree of freedom under general forcing conditions, whose damping is described by a fractional derivative of the order $0<{\alpha}<1$ which can be both irrational number and rational number. The new approach combines the fractional Green's function and Laplace transform of fractional derivative. Analytical examples of dynamic system under general forcing conditions obtained by means of this approach verify the feasibility very well with much higher reliability and universality.

Thermoelastic deformation properties of non-localized and axially moving viscoelastic Zener nanobeams

  • Ahmed E. Abouelregal;Badahi Ould Mohamed;Hamid M. Sedighi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.141-154
    • /
    • 2024
  • This study aims to develop explicit models to investigate thermo-mechanical interactions in moving nanobeams. These models aim to capture the small-scale effects that arise in continuous mechanical systems. Assumptions are made based on the Euler-Bernoulli beam concept and the fractional Zener beam-matter model. The viscoelastic material law can be formulated using the fractional Caputo derivative. The non-local Eringen model and the two-phase delayed heat transfer theory are also taken into account. By comparing the numerical results to those obtained using conventional heat transfer models, it becomes evident that non-localization, fractional derivatives and dual-phase delays influence the magnitude of thermally induced physical fields. The results validate the significant role of the damping coefficient in the system's stability, which is further dependent on the values of relaxation stiffness and fractional order.

Variable properties thermopiezoelectric problem under fractional thermoelasticity

  • Ma, Yongbin;Cao, Liuchan;He, Tianhu
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The dynamic response of a finite length thermo-piezoelectric rod with variable material properties is investigated in the context of the fractional order theory of thermoelasticity. The rod is subjected to a moving heat source and fixed at both ends. The governing equations are formulated and then solved by means of Laplace transform together with its numerical inversion. The results of the non-dimensional temperature, displacement and stress in the rod are obtained and illustrated graphically. Meanwhile, the effects of the fractional order parameter, the velocity of heat source and the variable material properties on the variations of the considered variables are presented, and the results show that they significantly influence the variations of the considered variables.