• 제목/요약/키워드: Fractional differential equations

검색결과 112건 처리시간 0.02초

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권4호
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments

  • Srivastava, Hari Mohan
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.73-116
    • /
    • 2020
  • The subject of fractional calculus (that is, the calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past over four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of mathematical, physical, engineering and statistical sciences. Various operators of fractional-order derivatives as well as fractional-order integrals do indeed provide several potentially useful tools for solving differential and integral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. The main object of this survey-cum-expository article is to present a brief elementary and introductory overview of the theory of the integral and derivative operators of fractional calculus and their applications especially in developing solutions of certain interesting families of ordinary and partial fractional "differintegral" equations. This general talk will be presented as simply as possible keeping the likelihood of non-specialist audience in mind.

CAPUTO DELAYED FRACTIONAL DIFFERENTIAL EQUATIONS BY SADIK TRANSFORM

  • Awad T. Alabdala;Basim N. Abood;Saleh S. Redhwan;Soliman Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.439-448
    • /
    • 2023
  • In this article, we are interested in studying the fractional Sadik Transform and a combination of the method of steps that will be applied together to find accurate solutions or approximations to homogeneous and non-homogeneous delayed fractional differential equations with constant-coefficient and possible extension to time-dependent delays. The results show that the process is correct, exact, and easy to do for solving delayed fractional differential equations near the origin. Finally, we provide several examples to illustrate the applicability of this method.

FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN OPERATOR

  • CHOUKRI DERBAZI;ABDELKRIM SALIM;HADDA HAMMOUCHE;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권1_2호
    • /
    • pp.21-36
    • /
    • 2024
  • In this paper, we study the existence of solutions for hybrid fractional differential equations with p-Laplacian operator involving fractional Caputo derivative of arbitrary order. This work can be seen as an extension of earlier research conducted on hybrid differential equations. Notably, the extension encompasses both the fractional aspect and the inclusion of the p-Laplacian operator. We build our analysis on a hybrid fixed point theorem originally established by Dhage. In addition, an example is provided to demonstrate the effectiveness of the main results.

POSITIVE SOLUTIONS FOR MULTI-POINT BOUNDARY VALUE PROBLEM OF FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Wang, Haihua
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.147-160
    • /
    • 2012
  • In this paper, we establish some sufficient conditions for the existence of positive solutions for a class of multi-point boundary value problem for fractional functional differential equations involving the Caputo fractional derivative. Our results are based on two fixed point theorems. Two examples are also provided to illustrate our main results.

Existence and Uniqueness of Solutions of Fractional Differential Equations with Deviating Arguments under Integral Boundary Conditions

  • Dhaigude, Dnyanoba;Rizqan, Bakr
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.191-202
    • /
    • 2019
  • The aim of this paper is to develop a monotone iterative technique by introducing upper and lower solutions to Riemann-Liouville fractional differential equations with deviating arguments and integral boundary conditions. As an application of this technique, existence and uniqueness results are obtained.

SOLVING FUZZY FRACTIONAL WAVE EQUATION BY THE VARIATIONAL ITERATION METHOD IN FLUID MECHANICS

  • KHAN, FIRDOUS;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권4호
    • /
    • pp.381-394
    • /
    • 2019
  • In this paper, we are extending fractional partial differential equations to fuzzy fractional partial differential equation under Riemann-Liouville and Caputo fractional derivatives, namely Variational iteration methods, and this method have applied to the fuzzy fractional wave equation with initial conditions as in fuzzy. It is explained by one and two-dimensional wave equations with suitable fuzzy initial conditions.

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.

BERRY-ESSEEN BOUND FOR MLE FOR LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION

  • RAO B.L.S. PRAKASA
    • Journal of the Korean Statistical Society
    • /
    • 제34권4호
    • /
    • pp.281-295
    • /
    • 2005
  • We investigate the rate of convergence of the distribution of the maximum likelihood estimator (MLE) of an unknown parameter in the drift coefficient of a stochastic process described by a linear stochastic differential equation driven by a fractional Brownian motion (fBm). As a special case, we obtain the rate of convergence for the case of the fractional Ornstein- Uhlenbeck type process studied recently by Kleptsyna and Le Breton (2002).