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ON EXACT SOLUTIONS FOR IMPULSIVE
DIFFERENTIAL EQUATIONS WITH NON-INTEGER

ORDERS

Sung Kyu Choi* and Namjip Koo**

Abstract. This paper deals with linear impulsive differential equa-
tions with non-integer orders. We provide the explicit representa-
tion of solutions of linear impulsive fractional differential equations
with constant coefficient by mean of the Mittag-Leffler functions.

1. Introduction

Fractional calculus is a theory of integrals and derivatives of any
arbitrary real (or complex) order. The integrals and derivatives of non-
integer order, and the fractional integro-differential equations have found
many applications in recent studies in theoretical physics, mechanics and
applied mathematics. Fractional-order models are found to be more
adequate than integer-order models in some real world problems. The
fractional order differential equations play a significant role in modeling
the anomalous dynamics of various processes related to complex systems
in most areas of science and engineering.

On the other hand, the mathematical investigations of the impulsive
differential equations mark their beginning with the work of Mil’man and
Myshkis in 1960(see [10]). They gave some general concepts about the
systems with impulse effect and obtained the first results on stability of
such systems solutions in [10]. Impulsive fractional differential equations
are a natural generalization of impulsive ordinary differential equations
and of fractional differential equations with fractional derivatives. At the
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present time the qualitative theory of such equations undergoes rapid
developments.

Choi et al. [2, 3] studied impulsive integral inequalities with a non-
separable kernel and stability of Caputo fractional differential equations.
Denton and Vatsala [5] established the explicit representation of the solu-
tion of the linear fractional differential equation with variable coefficient
and they developed the Gronwall integral inequality for the Riemann-
Liouville fractional differential equation.

Fečkan et al. [6] studied a Cauchy problem for a fractional differential
equation with linear impulsive conditions and gave a counterexample to
illustrate the concepts of piecewise continuous solutions used in current
papers are not appropriate. Choi et al. [1] provided an exact solution
of linear fractional differential equations with impulse effect by the help
of the Mittag-Leffler functions.

In this paper we provide the explicit representation of solutions of
homogeneous linear impulsive fractional differential equations involving
the Caputo derivatve with constant coefficient by mean of the Mittag-
Leffler functions.

2. Preliminaries

The Gamma function and the β-function are the basic functions in
fractional calculus. Gamma function Γ given by

Γ(z) =
∫ ∞

0
e−ttz−1dt, Re(z) > 0

satisfies Γ(z + 1) = zΓ(z) and Γ(n + 1) = n! for n ∈ N. Also, the
β-function is defined by the integral

β(z, w) =
∫ 1

0
tz−1(1− t)w−1dt, Re(z), Re(w) > 0.

The exponential function ez plays a fundamental role in mathematics
and it is really useful in theory of integer order differential equations.
We can write it in a form of series:

ez =
∞∑

k=0

zk

Γ(k + 1)
.

The Mittag-Leffler functions which is the generalizations of exponential
function play an important role in the theory of fractional differential
equations.
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We recall the notion of Mittag-Leffler functions which was origi-
nally introduced by G. M. Mittag-Leffler in 1902(see [11]). That is,
the Mittag-Leffler function is defined by

Eα(z) =
∞∑

k=0

zk

Γ(kα + 1)
, α > 0, z ∈ C. (2.1)

Note that the particular Mittag-Leffler function eat possesses the
semigroup property (i.e., ea(t+s) = eateas for all t, s ≥ 0), but the Mittag-
Leffler function Eα(atα) can not satisfy the semigroup property unless
α = 1 or a = 0 (see [12]).

We recall the definition of Caputo fractional derivative of a function
g : [t0,∞) → R. For the fractional calculus and the theory of fractional
differential equations, we refer the reader to [7, 9, 13].

Definition 2.1. [7] The Caputo fractional derivative of non-integer
order q of a function g is defined by

C
t0D

q
t g(t) =

1
Γ(1− q)

∫ t

t0

(t− s)−qg′(s)ds,

where g′(t) = dg(t)
dt .

Let t0, T ∈ [0,∞) and J = [t0, T ]. Let q be a positive real number
such that 0 < q ≤ 1. We consider the following fractional Cauchy
problems





C
t0D

q
t u(t) = f(t, u(t)), t 6= tk, t ∈ J,

u(t+k ) = u(t−k ) + Ik(u(t−k )), k = 1, 2, · · · ,m,

u(t0) = u0 ∈ R,

(2.2)

where C
t0D

q
t is the Caputo fractional derivative of order q with the lower

limit t0, f : J × R → R is jointly continuous, Ik : R → R and tk satisfy
0 ≤ t0 < t1 · · · < tm < tm+1 = T , u(t+k ) = limε→0+ u(tk + ε) and
u(t−k ) = limε→0− u(tk + ε) represent the right and left limits of u(t) at
t = tk.

For the notion of solution and the existence of solutions for Equation
(2.2), see [6, 14].

Denote by C(J,R) the set of all continuous functions from J into R.
Also, let PC(J,R) be the set of all functions from J into R as follows:

PC(J,R) = {u : J → R|u ∈ C((tk, tk+1],R), k = 0, 1, · · · ,m, and
there exist u(t−k ) and u(t+k ), k = 1, · · · ,m, with u(t−k ) = u(tk)}.
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3. Main results

In this section we deal with linear impulsive Caputo fractional differ-
ential equations with constant coefficient. We establish a explicit for-
mula of solutions of homogeneous linear impulsive fractional differential
equations by the help of the Mittag-Leffler functions. For the general
theory and applications of impulsive differential equations, we refer the
reader to [8, 13].

To prove our main theorem, we need some lemmas for the fractional
differential equations and impulsive fractional differential equations.

Lemma 3.1. [14] A function u ∈ C(J,R) is a solution of the fractional
integral equation

u(t) = ua − 1
Γ(q)

∫ a

t0

(a− s)q−1f(s, u(s))ds +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s))ds,

if and only if u is a solution of the following fractional Cauchy problems
{

C
t0D

q
t u(t) = f(t, u(t)), t ∈ J,

u(a) = ua, a > t0.
(3.1)

Lemma 3.2. [9] Let λ be a real constant. A function u ∈ C(J,R)
is a solution of the following linear fractional differential equation with
initial condition {

C
t0D

q
t u(t) = λu(t), t ∈ J,

u(t0) = ut0 , t ≥ t0 ≥ 0
(3.2)

if and only if the solution u of Equation (3.2) is given by

u(t) = u(t0)Eq(λ(t− t0)q), t ≥ t0 ≥ 0.

Lemma 3.3. [14] A function u ∈ PC(J,R) is a solution of the impul-
sive fractional integral equation

u(t) =





u(t0) + 1
Γ(q)

∫ t
t0

(t− s)q−1f(s, u(s))ds, t ∈ [t0, t1],
...

u(t0) +
∑

t0<tk<t

Ik(u(t−k )) +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s))ds,

t ∈ (tk, tk+1],

for k = 1, · · · ,m if and only if the function u is a solution of Equation
(2.2).
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The following our main result is an improvement of Theorem 2.4 in
[4].

Theorem 3.4. Assume that f(t, u) = λu and Ik(u(t−k )) = βku(t−k )
with constants λ and βk in Equation (2.2) for k = 1, 2, · · · ,m. Then the
solution u of Equation (2.2) is given by

u(t) =





u(t0)Eq(λ(t− t0)q), t ∈ [t0, t1],
u(t0)(1 + β1)Eq(λ(t1 − t0)q)Eq(λ(t− t1)q), t ∈ (t1, t2]
...

u(t0)
k∏

i=1

(1 + βi)Eq(λ(t1 − t0)q) · · ·Eq(λ(tk − tk−1)q)Eq(λ(t− tk)q),

t ∈ (tk, tk+1],

for k = 2, · · · ,m.

Proof. Let t ∈ [t0, t1]. Then it follows from Lemma 3.2 that

u(t) = u(t0)Eq(λ(t− t0)q).

Let t ∈ (t1, t2]. Then it follows from Lemma 3.3 that the solution u of
Equation (2.2) satisfies

u(t) = u(t0) + β1u(t−1 ) +
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds.

Thus the solution u on [t0, t2] of Equation (2.2) is given by

u(t) =

{
u(t0)Eq(λ(t− t0)q), t ∈ [t0, t1],
u(t0)(1 + β1)Eq(λ(t1 − t0)q)Eq(λ(t− t1)q), t ∈ (t1, t2],

since it satisfies the following initial condition

u(t+1 ) = u(t0) + β1u(t−1 ) +
1

Γ(q)

∫ t1

t0

(t1 − s)q−1λu(t0)Eq(λ(s− t0)q)ds

= u(t0) + β1u(t−1 ) +
u(t0)
Γ(q)

∞∑

k=0

λk+1

Γ(qk + 1)

∫ t1

t0

(t1 − s)q−1(s− t0)qkds

= u(t0) + β1u(t−1 ) +
u(t0)
Γ(q)

∞∑

k=0

λk+1(t1 − t0)qk+q

Γ(qk + 1)

∫ 1

0
(1− ξ)q−1ξqkdξ

= u(t0) + β1u(t−1 ) +
u(t0)
Γ(q)

∞∑

k=0

λk+1(t1 − t0)q(k+1)

Γ(qk + 1)
Γ(q)Γ(qk + 1)
Γ(q(k + 1) + 1)
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= u(t0) + β1u(t−1 ) + u(t0)
∞∑

k=1

λk(t1 − t0)qk

Γ(qk + 1)

= u(t0) + β1u(t−1 ) + u(t0)(Eq(λ(t1 − t0)q)− 1)

= (1 + β1)u(t−1 )
and one obtain

u(t)

= u(t0) + β1u(t−1 ) +
1

Γ(q)

∫ t

t0

(t− s)q−1λu(s)ds

= u(t0) + β1u(t−1 ) +
1

Γ(q)

∫ t1

t0

(t1 − s)q−1λu(t0)Eq(λ(s− t0)q)ds

+
1

Γ(q)

∫ t

t1

(t− s)q−1λu(t0)(1 + β1)Eq(λ(t1 − t0)q)Eq(λ(s− t1)q)ds

= (1 + β1)u(t−1 ) +
(1 + β1)u(t−1 )

∑∞
k=0

λk+1

Γ(qk+1)

∫ t

t1
(t− s)q−1(s− t1)qkds

Γ(q)

= (1 + β1)u(t−1 ) + (1 + β1)u(t−1 )
∞∑

k=0

λk+1(t− t1)qk+q

Γ(q(k + 1) + 1)

= (1 + β1)u(t−1 ) + (1 + β1)u(t−1 )(Eq(λ(t− t1)q)− 1)

= (1 + β1)u(t−1 )Eq(λ(t− t1)q)
= u(t0)(1 + β1)Eq(λ(t1 − t0)q)Eq(λ(t− t1)q), t ∈ (t1, t2].

Let t ∈ (tk, tk+1]. By above similar argument, then one obtain

u(t) = u(t0)
k∏

i=1

(1 + βi)Eq(λ(t1 − t0)q) · · ·Eq(λ(tk − tk−1)q)Eq(λ(t− tk)q),

for k = 2, 3, · · · ,m. This completes the proof.

Remark 3.5. Let q = 1 in Equation (3.2). Then the solution u of
the impulsive differential equation (3.2) of integer order in Theorem 3.4
reduces to

u(t) = u(t0)
k∏

i=1

(1 + βi)eλ(t−t0), t ∈ (tk, tk+1], for k = 1, 2 · · · , m.

Also, in case when q = 1 and βk = 0 for k = 1, · · · ,m in Equation
(3.2), then the solution u of Equation (3.2) reduces to the exponential
function

u(t) = u(t0)eλ(t−t0), t ∈ [t0, T ].
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