• Title/Summary/Keyword: Fractional Function

Search Result 327, Processing Time 0.029 seconds

ANALYSIS OF SOLUTIONS OF TIME FRACTIONAL TELEGRAPH EQUATION

  • Joice Nirmala, R.;Balachandran, K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.209-224
    • /
    • 2014
  • In this paper, the solution of time fractional telegraph equation is obtained by using Adomain decomposition method and compared with various other method to determine the efficiency of Adomain decomposition method. These methods are used to obtain the series solutions. Finally, results are analysed by plotting the solutions for various fractional orders.

STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER

  • Ben Makhlouf, Abdellatif;Hammami, Mohamed Ali;Sioud, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1309-1321
    • /
    • 2017
  • In this paper, we present a practical Mittag Leffler stability for fractional-order nonlinear systems depending on a parameter. A sufficient condition on practical Mittag Leffler stability is given by using a Lyapunov function. In addition, we study the problem of stability and stabilization for some classes of fractional-order systems.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

CERTAIN RESULTS INVOLVING FRACTIONAL OPERATORS AND SPECIAL FUNCTIONS

  • Aghili, Arman
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.487-503
    • /
    • 2019
  • In this study, the author provided a discussion on one dimensional Laplace and Fourier transforms with their applications. It is shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve space fractional partial differential equation with non - constant coefficients. The object of the present article is to extend the application of the joint Fourier - Laplace transform to derive an analytical solution for a variety of time fractional non - homogeneous KdV. Numerous exercises and examples presented throughout the paper.

Some New Subclasses of Analytic Functions defined by Srivastava-Owa-Ruscheweyh Fractional Derivative Operator

  • Noor, Khalida Inayat;Murtaza, Rashid;Sokol, Janusz
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.109-124
    • /
    • 2017
  • In this article the Srivastava-Owa-Ruscheweyh fractional derivative operator $\mathcal{L}^{\alpha}_{a,{\lambda}}$ is applied for defining and studying some new subclasses of analytic functions in the unit disk E. Inclusion results, radius problem and other results related to Bernardi integral operator are also discussed. Some applications related to conic domains are given.

FRACTIONAL VERSIONS OF HADAMARD INEQUALITIES FOR STRONGLY (s, m)-CONVEX FUNCTIONS VIA CAPUTO FRACTIONAL DERIVATIVES

  • Ghulam Farid;Sidra Bibi;Laxmi Rathour;Lakshmi Narayan Mishra;Vishnu Narayan Mishra
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.75-94
    • /
    • 2023
  • We aim in this article to establish variants of the Hadamard inequality for Caputo fractional derivatives. We present the Hadamard inequality for strongly (s, m)-convex functions which will provide refinements as well as generalizations of several such inequalities already exist in the literature. The error bounds of these inequalities are also given by applying some known identities. Moreover, various associated results are deduced.

GENERALIZED FRACTIONAL DIFFERINTEGRAL OPERATORS OF THE K-SERIES

  • Gupta, Rajeev Kumar;Shaktawat, Bhupender Singh;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • In the present paper, we further study the generalized fractional differintegral (integral and differential) operators involving Appell's function $F_3$ introduced by Saigo-Maeda [9], and are applied to the K-Series defined by Gehlot and Ram [3]. On account of the general nature of our main results, a large number of results obtained earlier by several authors such as Ram et al. [7], Saxena et al. [14], Saxena and Saigo [15] and many more follow as special cases.

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.