Browse > Article
http://dx.doi.org/10.5666/KMJ.2017.57.1.109

Some New Subclasses of Analytic Functions defined by Srivastava-Owa-Ruscheweyh Fractional Derivative Operator  

Noor, Khalida Inayat (Department of Mathematics, COMSATS Institute of Information Technology)
Murtaza, Rashid (Department of Mathematics, COMSATS Institute of Information Technology)
Sokol, Janusz (Faculty of Mathematics and Natural Sciences, University of Rzeszow)
Publication Information
Kyungpook Mathematical Journal / v.57, no.1, 2017 , pp. 109-124 More about this Journal
Abstract
In this article the Srivastava-Owa-Ruscheweyh fractional derivative operator $\mathcal{L}^{\alpha}_{a,{\lambda}}$ is applied for defining and studying some new subclasses of analytic functions in the unit disk E. Inclusion results, radius problem and other results related to Bernardi integral operator are also discussed. Some applications related to conic domains are given.
Keywords
analytic functions; convolution; subordination; Srivastava-Owa-Ruscheweyh fractional derivative operator; multiplier linear fractional differential operator; gamma function; incomplete beta function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl., 39(2000), 57-69.
2 H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J., 106(1987), 1-28.   DOI
3 F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339(2008), 655-667.   DOI
4 S. Bulut, An integral univalent operator defined by generalized Al-Oboudi differential operator on the classes $T_j$, $T_{j,u}$ and $S_j$ (p), Novi Sad J. Math., 40(1)(2010), 43-53.
5 F. M. Al-Oboudi and K. A. Al-Amoudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl., 354(2009), 412-420.   DOI
6 S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.   DOI
7 S. Bulut, A new subclass of analytic functions defined by generalized Ruscheweyh differential operator, J. Ineq. Appl., (2008), Art. ID 134932, 12 pp.
8 S. Bulut, Some properties for an integral operator defined by Al-Oboudi differential operator, J. Ineq. Pure Appl. Math., 9(4)(2008), Article 115, 5 pp.
9 S. Bulut, Univalence preserving integral operators defined by generalized Al-Oboudi differential operator, An. St. Univ. Ovidius Constanta, 17(1)(2009), 37-50.
10 S. Bulut, A new univalent integral operator defined by Al-Oboudi differential operator, Gen. Math., 18(2)(2010), 85-93.
11 P. L. Duren, Univalent functions, Springer-Verlog, New York, Berlin, 1983.
12 S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci., 38(2003), 2389-2400.
13 A. W. Goodman, Univalent Functions, Vols. I, II, Mariner publishing company, Tampa, Florida, USA. 1983.
14 D. I. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52(1975), 191-195.   DOI
15 R. W. Ibrahim and M. Darus, A note on fractional differential subordination based on the Srivastava-Owa operator, Math. Comput. Appl., 19(2)(2014), 115-123.
16 S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45(2000), 647-657.
17 S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327-336.   DOI
18 S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funct., 9(2000), 121-132.   DOI
19 S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker Inc., New York, 2000.
20 J. -L. Liu and K. I. Noor, On subordinations for certain analytic functions associated with Noor integral operator, Appl. Math. Comput., 187(2007), 1453-1460.
21 A. K. Mishra and P. Gochhayat, Applications of Owa-Srivastava operator to the class of k-uniformly convex functions, Fract. Calc. Appl. Anal., 9(4)(2006), 323-331.
22 S. Owa, On the distortion theorem I, Kyungpook Math. J., 18(1)(1978), 53-59.
23 K. I. Noor, Applications of certain operators to the classes of analytic functions related with generalized conic domains, Comput. Math. Appl., 62(2001), 4194-4206.
24 K. I. Noor, M. A. Noor and R. Murtaza, Inclusion properties with applications for certain subclasses of analytic functions, Appl. Math. Inf. Sci., 9(1)(2015), 491-500.   DOI
25 K. I. Noor, Q. Z. Ahmad and M. A. Noor, On some subclasses of analytic functions defined by fractional derivative in the conic regions, Appl. Math. Inf. Sci., 9(2)(2015), 819-824.
26 S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(5)(1987), 1057-1077.   DOI
27 O. Ozkan and O. Atintas, Applications of differential subordination, Appl. Math. Lett., 19(2006), 728-734.   DOI
28 K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc., 32(1985), 321-330.   DOI
29 Ch. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Gottingen, 1975.
30 S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.   DOI