• Title/Summary/Keyword: Fractional Differential Equation

Search Result 87, Processing Time 0.022 seconds

FIXED POINT THEOREMS FOR THE MODIFIED SIMULATION FUNCTION AND APPLICATIONS TO FRACTIONAL ECONOMICS SYSTEMS

  • Nashine, Hemant Kumar;Ibrahim, Rabha W.;Cho, Yeol Je;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.137-155
    • /
    • 2021
  • In this paper, first, we prove some common fixed point theorems for the generalized contraction condition under newly defined modified simulation function which generalize and include many results in the literature. Second, we give two numerical examples with graphical representations for verifying the proposed results. Third, we discuss and study a set of common fixed point theorems for two pairs (finite families) of self-mappings. Finally, we give some applications of our results in discrete and functional fractional economic systems.

Approximate Controllability for Semilinear Neutral Differential Systems in Hilbert Spaces

  • Jeong, Jin-Mun;Park, Ah-Ran;Son, Sang-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.559-581
    • /
    • 2021
  • In this paper, we establish the existence of solutions and the approximate controllability for the semilinear neutral differential control system under natural assumptions such as the local Lipschitz continuity of nonlinear term. First, we deal with the regularity of solutions of the neutral control system using fractional powers of operators. We also consider the approximate controllability for the semilinear neutral control equation, with a control part in place of a forcing term, using conditions for the range of the controller without the inequality condition as in previous results.

ON A TYPE OF DIFFERENTIAL CALCULUS IN THE FRAME OF GENERALIZED HILFER INTEGRO-DIFFERENTIAL EQUATION

  • Mohammed N. Alkord;Sadikali L. Shaikh;Mohammed B. M. Altalla
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.83-98
    • /
    • 2024
  • In this paper, we investigate the existence and uniqueness of solutions to a new class of integro-differential equation boundary value problems (BVPs) with ㄒ-Hilfer operator. Our problem is converted into an equivalent fixed-point problem by introducing an operator whose fixed points coincide with the solutions to the given problem. Using Banach's and Schauder's fixed point techniques, the uniqueness and existence result for the given problem are demonstrated. The stability results for solutions of the given problem are also discussed. In the end. One example is provided to demonstrate the obtained results

AN EFFICIENT METHOD FOR SOLVING TWO-ASSET TIME FRACTIONAL BLACK-SCHOLES OPTION PRICING MODEL

  • DELPASAND, R.;HOSSEINI, M.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.121-137
    • /
    • 2022
  • In this paper, we investigate an efficient hybrid method for solving two-asset time fractional Black-Scholes partial differential equations. The proposed method is based on the Crank-Nicolson the radial basis functions methods. We show that, this method is convergent and we obtain good approximations for solution of our problems. The numerical results show high accuracy of the proposed method without needing high computational cost.

DEVELOPMENT OF A NON-STANDARD FINITE DIFFERENCE METHOD FOR SOLVING A FRACTIONAL DECAY MODEL

  • SAID AL KATHIRI;EIHAB BASHIER;NUR NADIAH ABD HAMID;NORSHAFIRA RAMLI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.695-708
    • /
    • 2024
  • In this paper we present a non-standard finite difference method for solving a fractional decay model. The proposed NSFDM is constructed by incorporating a non-standard denominator function, resulting in an explicit numerical scheme as easy as the conventional Euler method, but it provides very accurate solutions and has unconditional stability. Two examples from the literature are presented to demonstrate the performance of the proposed numerical scheme, which is compared to three methods from the literature. It is found that the method's estimated errors are extremely minimal, such as within the machine precision.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Nonlinear vibration analysis of fluid-conveying cantilever graphene platelet reinforced pipe

  • Bashar Mahmood Ali;Mehmet AKKAS;Aybaba HANCERLIOGULLARI;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • This paper is motivated by the lack of studies relating to vibration and nonlinear resonance of fluid-conveying cantilever porous GPLR pipes with fractional viscoelastic model resting on nonlinear foundations. A dynamical model of cantilever porous Graphene Platelet Reinforced (GPLR) pipes conveying fluid and resting on nonlinear foundation is proposed, and the vibration, natural frequencies and primary resonant of such system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with fractional viscoelastic model is used to govern the construction relation of the nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied on pipe and excitation frequency is close to the first natural frequency. The governing equation for transverse motion of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

EXISTENCE UNIQUENESS AND STABILITY OF NONLOCAL NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSES AND POISSON JUMPS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;RAVIKUMAR, K.;COX, EOFF
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.107-122
    • /
    • 2022
  • This manuscript aims to investigate the existence, uniqueness, and stability of non-local random impulsive neutral stochastic differential time delay equations (NRINSDEs) with Poisson jumps. First, we prove the existence of mild solutions to this equation using the Banach fixed point theorem. Next, we demonstrate the stability via continuous dependence initial value. Our study extends the work of Wang, and Wu [16] where the time delay is addressed by the prescribed phase space 𝓑 (defined in Section 3). To illustrate the theory, we also provide an example of our methods. Using our results, one could investigate the controllability of random impulsive neutral stochastic differential equations with finite/infinite states. Moreover, one could extend this study to analyze the controllability of fractional-order of NRINSDEs with Poisson jumps as well.