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Abstract. In this paper, we establish the existence of solutions and the approximate con-

trollability for the semilinear neutral differential control system under natural assumptions

such as the local Lipschitz continuity of nonlinear term. First, we deal with the regularity

of solutions of the neutral control system using fractional powers of operators. We also

consider the approximate controllability for the semilinear neutral control equation, with

a control part in place of a forcing term, using conditions for the range of the controller

without the inequality condition as in previous results.

1. Introduction

In this paper, we are concerned with the global existence of solution and the
approximate controllability for the semilinear neutral system in a Hilbert space H:
(1.1)

d

dt
[x(t) + g(t,

∫ t

0

a(t, s, x(s))ds)] +Ax(t) = f(t, x(t)) + k(t), t ∈ (0, T ],

x(0) = x0.

Here, −A generates an analytic semigroup in H(see [21, Theorem 3.6.1]). The
nonlinear operator f is assumed to be locally Lipschitz continuous with respect to
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the second variable, and g is Lipschitz continuous. This kind of equation arises in
heat conduction in material with memory, in population dynamics, and in control
systems with hereditary feed back control governed by an integro-differential law.

In the first part of this paper, we establish the well-posedness and regularity
property for (1.1). The solvability for a class of semilinear functional differential
equations has been studied by many authors as seen in Section 4.3.1 of Barbu [1]
and [11, 13, 17]. Our approach is to obtain the L2-regularity under the above
formulation of the semilinear neutral problem (1.1) using the contraction mapping
principle (see the linear cases of [4]). Recently, the existence of solutions for mild
solutions for neutral differential equations with state-dependence delay has been
studied in the literature [8, 9, 10].

Next, based on the regularity for (1.1), we intend to establish the approximate
controllability for the following semilinaer neutral control system with control part
in place of a forcing term:
(1.2)

d

dt
[x(t) + g(t,

∫ t

0

a(t, s, x(s))ds)] +Ax(t) = f(t, x(t)) +Bu(t), t ∈ (0, T ],

x(0) = x0,

namely that the reachable set of trajectories of (1.2) is a dense subset of H. Here,
the controller operator B is a bounded linear operator from a Banach space of
control variables into H and u is a control. This kind of equations arise naturally
in physics, in biology, control engineering problem, etc.

As for the approximate controllability for semilinear control systems, we refer
to [2, 3, 5, 7, 20, 23]. The controllability for neutral equations has been studied
by many authors, for example, the controllability of neutral functional differential
systems with unbounded delay in [5, 6, 15], neutral evolution integrodifferential
systems with state dependent delay in [14, 18], impulsive neutral functional evolu-
tion integrodifferential systems with infinite delay in [19]. However, there are few
literature works treating the systems with local Lipschitz continuity. As a sufficient
condition for the approximate controllabilityl, Wang [24] assumed that the semi-
group S(t) generated by A is compact in order to guarantee the compactness of the
solution mapping(see also [16]).

In this paper, we no longer require the compact property of the semigroup and
the uniform boundedness of the nonlinear term, but instead we need properties
fractional power of operators and conditions for the range of the controller without
the inequality condition as in previous results.

The paper is organized as follows. In Section 2, the results of general linear
evolution equations besides notations and assumptions are stated. In Section 3, we
will obtain that the regularity for parabolic linear equations can also be applicable
to (1.1) with nonlinear terms satisfying local Lipschitz continuity. The approach
used here is similar to that developed in [11, 12, 16] on the general semilinear
evolution equations, which is an important role to extend the theory of practical
nonlinear partial differential equations. Thereafter, we investigate the approximate
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controllability for the problem (1.2) in Section 4. In the proofs of the main theorems,
we need conditions on the range of the controller without the inequality condition
as in previous results(see [16, 25]) without conditions of the compact property of
a semigroup and the uniform boundedness. Finally we give a simple example to
which our main result can be applied.

2. Regularity for Linear Equations

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and
the corresponding injections are continuous. The norm on V , H and V ∗ will be
denoted by || · ||, | · | and || · ||∗, respectively. The duality pairing between the element
v1 of V ∗ and the element v2 of V is denoted by (v1, v2), which is the ordinary inner
product in H if v1, v2 ∈ H.

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as
element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for brevity, we
may regard that

(2.1) ||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V.

Let b(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

(2.2) Re b(u, u) ≥ ω1||u||2 − ω2|u|2,

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with this
sesquilinear form:

(Au, v) = b(u, v), u, v ∈ V.

Then −A is a bounded linear operator from V to V ∗ by the Lax-Milgram Theorem.
The realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. From the following inequalities

ω1||u||2 ≤ Rea(u, u) + ω2|u|2 ≤ |Au| |u|+ ω2|u|2 ≤ max{1, ω2}||u||D(A)|u|,

where
||u||D(A) = (|Au|2 + |u|2)1/2

is the graph norm of D(A), it follows that there exists a constant C0 > 0 such that

(2.3) ||u|| ≤ C0||u||1/2D(A)|u|
1/2.
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Thus we have the following sequence

(2.4) D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗,

where each space is dense in the next one which continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section
1.3.3 of [22]).

It is also well known that −A generates an analytic semigroup S(t) in both H
and V ∗. For the sake of simplicity we assume that ω2 = 0 and hence the closed half
plane {λ : Reλ ≥ 0} is contained in the resolvent set of A.

If X is a Banach space, L2(0, T ;X) is the collection of all strongly measur-
able square integrable functions from (0, T ) into X and W 1,2(0, T ;X) is the set of
all absolutely continuous functions on [0, T ] such that their derivative belongs to
L2(0, T ;X). C([0, T ];X) will denote the set of all continuously functions from [0, T ]
into X with the supremum norm. If X and Y are two Banach spaces, L(X,Y ) is
the collection of all bounded linear operators from X into Y , and L(X,X) is simply
written as L(X). Let the solution spaces W(T ) and W1(T ) of strong solutions be
defined by

W(T ) := L2(0, T ;D(A)) ∩W 1,2(0, T ;H),

W1(T ) := L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, we have

W(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

The semigroup generated by −A is denoted by S(t) and there exists a constant
M such that

|S(t)| ≤M, ||S(t)||∗ ≤M.

The following Lemma is from Lemma 3.6.2 of [21].

Lemma 2.2. There exists a constant M > 0 such that the following inequalities
hold for all t > 0 and every x ∈ H or V ∗:

(2.5) |S(t)x| ≤Mt−1/2||x||∗, ||S(t)x|| ≤Mt−1/2|x|.

First of all, consider the following linear system

(2.6)

{
x
′
(t) +Ax(t) = k(t),

x(0) = x0.
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By virtue of Theorem 3.3 of [4](or Theorem 3.1 of [11], [21]), we have the
following result on the corresponding linear equation of (2.6).

Proposition 2.3. Suppose that the assumptions for the principal operator A stated
above are satisfied. Then the following properties hold:

(1) For x0 ∈ V = (D(A), H)1/2,2(see Lemma 2.1) and k ∈ L2(0, T ;H), T > 0,
there exists a unique solution x of (2.6) belonging to W(T ) ⊂ C([0, T ];V ) and
satisfying

(2.7) ||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)),

where C1 is a constant depending on T .

(2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique solution
x of (2.6) belonging to W1(T ) ⊂ C([0, T ];H) and satisfying

(2.8) ||x||W1(T ) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)),

where C1 is a constant depending on T .

Corollary 2.4. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0
S(t − s)k(s)ds for

0 ≤ t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H),(2.9)

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H),(2.10)

and

(2.11) ||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H).

Proof. The assertion (2.9) is immediately obtained by (2.7). Since

||x||2L2(0,T ;H) =
∫ T
0
|
∫ t
0
S(t− s)k(s)ds|2dt ≤M

∫ T
0

(
∫ t
0
|k(s)|ds)2dt

≤M
∫ T
0
t
∫ t
0
|k(s)|2dsdt ≤M T 2

2

∫ T
0
|k(s)|2ds

it follows that
||x||L2(0,T ;H) ≤ T

√
M/2||k||L2(0,T ;H).

From (2.3), (2.9), and (2.10) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4},
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the proof is complete. 2

3. Semilinear Differential Equations

From now on, we establish the following results on the local solvability of the
following equation;
(3.1)

d

dt
[x(t) + g(t,

∫ t

0

a(t, s, x(s))ds)] +Ax(t) = f(t, x(t)) + k(t), t ∈ (0, T ]

x(0) = x0,

where A is the operator mentioned in Section 2 and f is a nonlinear mapping from
[0, T ] × V into H which will be assumed later. It is also well known that Aα is a
closed operator with its domain dense and D(Aα) ⊃ D(Aβ) for 0 < α < β. Due to
the well known fact that A−α is a bounded operator, we can assume that there is
a constant Cα > 0 such that

(3.2) ||A−α||L(H) ≤ C−α, ||A−α||L(V ∗,V ) ≤ C−α.

Lemma 3.1. For any T > 0, there exists a positive constant Cα such that the
following inequalities hold for all t > 0:

(3.3) ||AαS(t)||L(H) ≤
Cα
tα
, ||AαS(t)||L(V,H) ≤

Cα
t3α/2

.

Proof. The inequality (2.5) implies (3.3) by properties of fractional power of A
and the definition of W (t). For more details about the above lemma, we refer to
[21, 17]. 2

We give the following assumptions.
Assumption(A). Let a : R+ × R+ × V → H be a continuous function. Then
there exists a constant La such that

|a(t, s, 0)| ≤ La, |a(t, s, x(s))− a(t, s, y(s))| ≤ La||x(s)− y(s)||

Assumption(F). Let f : [0, T ]×V → H be a nonlinear mapping such that There
exists a function L : R+ → R such that

|f(t, x)| ≤ L(r), |f(t, x)− f(t, y)| ≤ L(r)||x− y||

hold for any t ∈ [0, T ], ||x|| ≤ r and ||y|| ≤ r.
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Assumption(G). Let g : [0, T ]×H → H be a nonlinear mapping such that there
exist constants β > 1/3 and Lg satisfying the following conditions hold:

(i) For any x ∈ H, the mapping g(·, x) is strongly measurable;

(ii) There exist positive constants Lg and β > 1/3 such that

g(0, 0) = 0, |Aβg(t, 0)| ≤ Lg, |Aβg(t, x)−Aβg(t, x̂)| ≤ Lg|x− x̂|,

for all t ∈ [0, T ], and x, x̂ ∈ H.

(iii) ∂ig is measurable in t ∈ [0, T ] for each x ∈ H and continuous in x ∈ H
for a.e. t ∈ [0, T ], where ∂ig is the partial derivative with respect to i-th
coordinate and the value ∂ig(t, x) is the Gateau derivative of g(t, x) for each
i = 1, 2 , and

|∂ig(t, 0)| ≤ Lg, |∂ig(t, x1)− ∂ig(t, x2)| ≤ Lg|x1 − x2|

for t ≤ T and x1, x2 ∈ H.

Let us rewrite (Fx)(t) = f(t, x(t)) for each x ∈ L2(0, T ;V ). Then by Assump-
tion (F), there is a constant, denoted again by L(r), such that

||Fx||L2(0,T ;H) ≤ L(r)
√
T , ||Fx1 − Fx2||L2(0,T ;H) ≤ L(r)||x1 − x2||L2(0,T ;V )

hold for x1, x2 ∈ Br(T ) = {x ∈ L2(0, T ;V ) : ||x||L2(0,T ;V ) ≤ r}.

Lemma 3.2. Let us assume Assumptions (F),(G) and (A) for 0 < s ≤ t, we have

(3.4) |Aβg(s,

∫ s

0

a(s, τ, x(τ))dτ)| ≤ Lg(La
√
t||x||L2(0,t;V ) + Lat+ 1),

and
(3.5)

|Aβg(s,

∫ s

0

a(s, τ, x(τ))dτ)−Aβg(s,

∫ s

0

a(s, τ, y(τ))dτ)| ≤ LgLa
√
t||x− y||L2(0,t;V ).
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Proof. From Assumptions (G), (A) and using Hölder inequality we have

|Aβg(s,

∫ s

0

a(s, τ, x(τ))dτ)|

= |Aβg(s,

∫ s

0

a(s, τ, x(τ))dτ)−Aβg(s, 0)|+ |Aβg(s, 0)|

≤ Lg(
∫ s

0

|a(s, τ, x(τ))|dτ + 1)

≤ Lg(
∫ s

0

|a(s, τ, x(τ))− a(s, τ, 0)|dτ +

∫ s

0

|a(s, τ, 0)|dτ + 1)

≤ Lg(La
∫ s

0

||x(τ)||dτ + Lat+ 1)

≤ Lg(La
√
t||x||L2(0,T ;V ) + Lat+ 1).

Moreover, we have

|Aβg(s,

∫ s

0

a(s, τ, x(τ))dτ)−Aβg(s,

∫ s

0

a(s, τ, y(τ))dτ)|

≤ Lg(
∫ s

0

|a(s, τ, x(τ))− a(s, τ, y(τ))|dτ

≤ LgLa
∫ s

0

||x(τ)− y(τ)||dτ

≤ LgLa
√
t||x− y||L2(0,t;V ).

2

Theorem 3.3. Let Assumptions (F), (G) and (A) be satisfied. Assume that x0 ∈
H, k ∈ L2(0, T ;V ∗). Then, there exists a time T0 ∈ (0, T ) such that the equation
(3.1) admits a solution

(3.6) x ∈ L2(0, T0;V ) ∩W 1,2(0, T0;V ∗) ⊂ C([0, T0];H).

Proof. For a solution of (3.1) in the wider sense, we are going to find a solution of
the following integral equation

x(t) =− g(t,

∫ t

0

a(t, s, x(s))ds) + S(t)x0 +

∫ t

0

S(t− s){(Fx)(s) + k(s)}ds

+

∫ t

0

AS(t− s)g(s,

∫ s

0

a(s, τ, x(τ))dτ)ds.(3.7)

To prove a local solution, we will use the successive iteration method. First, put

x0(t) = S(t)x0 +

∫ t

0

S(t− s)k(s)ds
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and define xj+1(t) as

xj+1(t) =x0(t)− g(t,

∫ t

0

a(t, s, xj(s))ds) +

∫ t

0

S(t− s)(Fxj)(s)ds

+

∫ t

0

AS(t− s)g(s,

∫ s

0

a(s, τ, xj(τ))dτ)ds.(3.8)

By virtue of Proposition 2.3, we have x0(·) ∈W1(t), so that

(3.9) ||x0||W1(t) ≤ C1(|x0|+ ||k||L2(0,t;V ∗)),

where C1 is a constant in Proposition 2.3. Choose

r > C1(|x0|+ ||k||L2(0,t;V ∗)).

Putting

p1(t) =

∫ t

0

S(t− s)(Fx0)(s)ds,

by (2.11) of Corollary 2.4, we have

(3.10) ||p1||L2(0,t;V ) ≤ C2

√
t||Fx0||L2(0,t;H) ≤ C2L(r)t.

Let

p2(s) =

∫ s

0

AS(s− τ)g(τ,

∫ τ

0

a(τ, σ, x0(σ))dσ))dτ.

Then From Assumption (G), (A), (3.3) and (3.4), we have

||p2||L2(0,t;V ) =
[ ∫ t

0

∥∥∫ s

0

AS(s− τ)g(τ,

∫ τ

0

a(τ, σ, x0(σ))dσ))dτ
∥∥2ds] 1

2

(3.11)

≤
[ ∫ t

0

{∫ s

0

C1−β

(s− τ)3(1−β)/2
Lg(La

√
t||x0||L2(0,t;V ) + Lat+ 1)dτ

}2
ds
] 1

2

≤ C1−βLg(La
√
t||x0||L2(0,t;V ) + Lat+ 1)

(∫ t

0

(

∫ s

0

1

(s− τ)3(1−β)/2
dτ)2ds

) 1
2

=
2

3β − 1

√
1

3β
C1−βLg(La

√
t||x0||L2(0,t;V ) + Lat+ 1)t

3β
2

Set

p3(s) = g(s,

∫ s

0

a(s, τ, x0(τ))dτ).
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Then by Assumption (G), (3.2) and (3.4),

||p3||L2(0,t;V ) = (

∫ t

0

||g(s,

∫ s

0

a(s, τ, x0(τ))dτ ||2ds) 1
2(3.12)

= (

∫ t

0

||A−βAβg(s,

∫ s

0

a(s, τ, x0(τ))dτ ||2ds) 1
2

≤ C−βLg(
∫ t

0

(La
√
t||x0||L2(0,t;V ) + Lat+ 1)2ds)

1
2

≤ C−βLg(La
√
t||x0||L2(0,t;V ) + Lat+ 1)

√
t

Put

M1 := max
{
C2L(r)t,(3.13)

2

3β − 1

√
1

3β
C1−βLg(La

√
t||x0||L2(0,t;V ) + Lat+ 1)t

3β
2 ,

C−βLg(La
√
t||x0||L2(0,t;V ) + Lat+ 1)

√
t
}
.

Then for any t satisfying M1 < r, from(3.6) and (3.7),

||x1||L2(0,t;V )

≤ r + C2L(r)t+
2

3β − 1

√
1

3β
C1−βLg(La

√
t||x0||L2(0,t;V ) + Lat+ 1)t

3β
2

+ C−βLg(La
√
t||x0||L2(0,t;V ) + Lat+ 1)

√
t ≤ 4r.

By induction, it can be shown that for all j = 1, 2, ... ,

||xj ||L2(0,t;V ) ≤ 4r.

Hence, from the equation

xj+1(t)− xj(t) = −g(t,

∫ t

0

a(t, s, xj(s))ds) + g(t,

∫ t

0

a(t, s, xj−1(s))ds)

+

∫ t

0

S(t− s){f(t, xj(s))− f(t, xj−1(s))}ds

+

∫ t

0

AS(t− s)
{
g
(
s,

∫ s

0

a(s, τ, xj(τ))dτ
)
ds− g

(
s,

∫ s

0

a(s, τ, xj−1(τ))
)}
dτ)ds.

Put

(3.14) M2 := C−βLgLat+ C2L(4r)
√
t+ C1−βLgLa(

2√
3(3β − 2)(3β + 3)

)
1
2 t

3β+3
4 .
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In a similar way to (3.11) and (3.12) and Assumption (F), we can observe that the
inequality

||xj+1 − xj ||L2(0,t;V ) ≤M2||xj − xj−1||L2(0,t;V )

≤ (M2)j ||x1 − x0||L2(0,t;V ).

Choose T0 > 0 satisfying max{M1,M2} < 1, Then {xj} is strongly convergent to
a function x in L2(0, T0;V ) uniformly on 0 ≤ t ≤ T0 and so is in W 1,2(0, T ;V ∗)
by (iii) of Assumption (G). By letting j → ∞ in (3.8) has a unique solution x in
W1(T0). 2

From now on, we give a norm estimation of the solution of (3.1) and establish the
global existence of solutions with the aid of norm estimations by similar argument
using (3.1) and (iii) of Assumption (G).

Theorem 3.4. Under the Assumptions (A), (F) and (G), there exists a unique
solution x of (3.1) such that

x ∈W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H), T > 0.

for any x0 ∈ H, k ∈ L2(0, T ;V ∗). Moreover, there exists a constant C3 such that

(3.15) ||x||W1
≤ C3(1 + |x0|+ ||k||L2(0,T ;V ∗)),

where C3 is a constant depending on T .

Proof. Let x be a solution of (3.1) on [0, T0], T0 > 0 satisfies max{M1,M2} < 1.
Here, M1 and M2 be constants in (3.13) and (3.14), respectively. Then by virtue of
Theorem 3.1, the solution x is represented as

x(t) =x0(t)− g(t,

∫ t

0

a(t, s, x(s))ds) +

∫ t

0

S(t− s)(Fx)(s)ds

+

∫ t

0

AS(t− s)g(s,

∫ s

0

a(s, τ, x(τ))dτ)ds.

where

x0(t) = S(t)x0 +

∫ t

0

S(t− s)k(s)ds

By (3.9), we have x0(·) ∈W1(T0), so that

||x0||W1(T0) ≤ C1(|x0|+ ||k||L2(0,T0;V ∗)),

where C1 is a constant in Proposition 2.3. Moreover, from (3.9)-(3.12), it follows
that

(3.16) ||x||W1(T0) ≤ C1(|x0|+ ||k||L2(0,T0;V ∗)) + max{M1,M2}||x||W1(T0).
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Thus, Moreover, there exists a constant C3 such that

||x||W1(T0) ≤ C3(1 + |x0|+ ||k||L2(0,T0;V ∗)).

Now from

|S(T0)x0 +

∫ T0

0

S(T0 − s){(Fx)(s) + k(s)}ds|

≤M |x0|+MT0L(r) +M
√
T0||k||L2(0,T0;H),

∣∣− g(t,

∫ t

0

a(t, s, x(s))ds)
∣∣ ≤ Lg(La√t||x||L2(0,t;V ) + Lat+ 1),

and ∣∣ ∫ t

0

AS(t− s)g(s,

∫ s

0

a(s, τ, x(τ))dτ)ds
∣∣

≤
∫ t

0

∣∣ C1−β

(t− s)(1−β)/2
Lg(La

√
t||x||L2(0,t;V ) + Lat+ 1)

∣∣ds
= 2(β + 1)−1t(β+1)/2C1−βLg(La

√
t||x||L2(0,t;V ) + Lat+ 1).

it follows that

|x(T0)| ≤M |x0|+MT0L(r) +M
√
T0||k||L2(0,T0;H)

+ Lg(La
√
t||x||L2(0,t;V ) + Lat+ 1)

+ 2((β + 1)−1t(β + 1)/2C1−βLg(La
√
t||x||L2(0,t;V ) + Lat+ 1) <∞.

Hence, we can solve the equation in [T0, 2T0] with the initial value x(T0) and obtain
an analogous estimate to (3.16). Since the condition (3.13), (3.14) is independent
of initial values, the solution can be extended to the interval [0, nT0] for any natural
number n, i.e., for the initial u(nT1) in the interval [nT1, (n + 1)T1], as analogous
estimate (3.16) holds for the solution in [0, (n+ 1)T1]. 2

From the following result, we obtain that the solution mapping is continuous,
which is useful for physical applications of the given equation.

Corollary 3.5. Let the Assumptions (A), (F) and (G) be satisfied and (x0, k) ∈
H ×L2(0, T ;V ∗) for each T > 0. Then the solution x of the equation (3.1) belongs
to x ∈W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H) and the mapping

H × L2(0, T ;V ∗) 3 (x0, k) 7→ x ∈W1(T )

is continuous.
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Proof. From Theorem 3.4, it follows that if (x0, k) ∈ H × L2(0, T ;V ∗) then x
belongs to W1(T ). Let (x0i, ki) ∈ H ×L2(0, T ;V ∗) and xi ∈W1(T ) be the solution
of (3.1) with (x0i, ki) in place of (x0, k) for i = 1, 2. Hence, we assume that xi
belongs to a ball Br(T ) = {y ∈W(T ) : ||y||W1(T ) ≤ r}.

Let

(pxj)(t) =− g(t,

∫ t

0

a(t, s, xj(s))ds) +

∫ t

0

S(t− s)(Fxj)(s)ds

+

∫ t

0

AS(t− s)
{
g
(
s,

∫ s

0

a(s, τ, xj(τ))dτ
)
ds.

Then, by virtue of 2) of Proposition 2.1, we get

||x1 − x2||W1(T ) ≤ C1{|x01 − x02|+ ||k1 − k2||L2(0,T ;V ∗ + ||px1 − px2||L2(0,T ;V ∗)}.
(3.17)

Set || · ||L2(0,T0;V ) = || · ||L2 for brevity, where T0 > 0 satisfies max{M1,M2} < 1.
Then, we have

||px1 − px2||L2(0,T ;V ∗) ≤ ||px1 − px2||L2

(3.18)

= || − g(t,

∫ t

0

a(t, s, xj(s))ds) + g(t,

∫ t

0

a(t, s, xj−1(s))ds)||L2

+
∥∥ ∫ t

0

S(t− s){(Fx1)(s))− (Fx2)(s))}ds
∥∥
L2

+
∥∥ ∫ t

0

AS(t− s)
{
g
(
s,

∫ s

0

a(s, τ, x1(τ))dτ
)
ds− g

(
s,

∫ s

0

a(s, τ, x2(τ))
)}
dτ)ds

∥∥
L2

≤M2||x1 − x2||L2 .

Hence, by (3.17), (3.18) and (iii) of Assumption (G), we see that

xn 7→ x ∈W1(T0) ≡ L2(0, T0;V )) ∩W 1,2(0, T0;V ∗).

This implies that (xn(T0), (xn)T0
) 7→ (x(T0), xT0

) in H×L2(0, T ;V ∗). Hence the
same argument shows that xn 7→ x in

L2(T0,min{2T0, T};V )) ∩W 1,2(T2,min{2T0, T};V ∗).

Repeating this process we conclude that xn 7→ x in W1(T ). 2

4. Controllability

Let U be a Banach space of control variables, and let B be an operator from
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U to H, called controller. In this paper, we are concerned with the approximate
controllability for the following the semilinear neutral control system with a control
part Bu in place of k of (3.1):
(4.1)

d

dt
[x(t) + g(t,

∫ t

0

a(t, s, x(s))ds)] +Ax(t) = f(t, x(t)) +Bu(t), t ∈ (0, T ],

x(0) = x0.

Let x(T ; f, u) be a state value of the system (4.1) at time T corresponding to the
nonlinear term f and the control u.

Definition 4.1 The system (4.1) is said to be approximately controllable in the
time interval [0, T ] if for every desired final state x1 ∈ H and ε > 0 there exists a
control function u ∈ L2(0, T ;U) such that the solution x(T ; f, u) of (4.1) satisfies
|x(T ; f, u)− x1| < ε.

In order to obtain results of controllability, we need the stronger hypotheses
than those of Section 3:
Assumption (A1). Let a : R+ × R+ ×H → H be a continuous function. Then
there exists a constant La such that

|a(t, s, 0)| ≤ La, |a(t, s, x(s))− a(t, s, y(s))| ≤ La|x(s)− y(s)|.

Assumption (F1). Let f : [0, T ]×H be a nonlinear mapping such that

(i) t→ f(t, x) is measurable;

(ii) f is locally Lipschitz continuous respect to x, that is, for each r > 0, there
exists a constant Lf = L(r) > 0 such that

|f(t, x)− f(t, y)| ≤ Lf |x− y|

hold for any t ∈ [0, T ], |x| ≤ r and |y| ≤ r.

Assumption (G1). Let g : [0, T ]×H → D(A) be a nonlinear mapping such that
there exists Lg satisfying the following conditions hold:

(i) (i) and (iii) of Assumption (G) in Section 3 are satisfied.

(ii) There exists positive constants Lg such that

g(0, 0) = 0, |Ag(t, 0)| ≤ Lg, |Ag(t, x)−Ag(t, x̂)| ≤ Lg|x− x̂|,

for all t ∈ [0, T ], and x, x̂ ∈ H.

We define the linear operator Ŝ from L2(0, T ;H) to H by

Ŝp =

∫ T

0

S(T − s)p(s)ds for p ∈ L2(0,T; H).
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Assumption (S). For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U)
such that {

|Ŝp− ŜΦu| < ε,

||Bu||L2(0,t;H) ≤ q||p||L2(0,t;H), 0 ≤ t ≤ T.

where q is a constant independent of p.

Here, we remark that Assumptions (A1), (F1) and (G1) are actually sufficient
conditions for Assumptions (A), (F) and (G), respectively. So, if (x0, k) ∈ H ×
L2(0, T ;V ∗) then from Theorem 3.2 and Corollary 3.1, it follows that the solution
x of the equation (4.1) belongs to x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)
and the mapping

H × L2(0, T ;U) 3 (x0, u) 7→ x ∈W1(T )

is continuous.

Lemma 4.2. Let u1 and u2 be in L2(0, T ;U). Then under the Assumptions (A1),
(F1), (G1), and ||x(·; f, u1)||C([0,T ;H]) < r, we have

(4.2) ||x(· ; f, u1)− x(· ; f, u2)||C([0,T ];H) ≤MeM3
√
t||Bu1 −Bu2||L2(0,T ;H)

for 0 ≤ t ≤ T , where

(4.3) M3 := (||A−1||LgLa +MLf +MLaLgT )T.

Proof. For brevity, we set xi(t) = x(t; f, ui)(i = 1, 2). Let

(pxi)(t) =− g(t,

∫ t

0

a(t, s, xi(s))ds) +

∫ t

0

S(t− s)f(t, xj(s))ds

+

∫ t

0

AS(t− s)
{
g
(
s,

∫ s

0

a(s, τ, xj(τ))dτ
)
ds.

Then, we see

|x1(t)− x2(t)| ≤ |px1 − px2|+ |
∫ t

0

S(t− s)B(u1(s)− u2(s))ds|.(4.4)

Here, by Assumptions (F1) and(G1), he following inequalities hold:

|px1 − px2| ≤ (||A−1||LgLa +MLf +MLaLgt)

∫ t

0

|x1(s)− x2(s)|ds,(4.5)
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and

(4.6) |
∫ t

0

S(t− s)B(u1(s)− u2(s))ds| ≤M
√
t||Bu1 −Bu2||L2(0,T ;H).

Thus from (4.4)-(4.6) and using Gronwall’s inequality, it follows that

|x1(t)− x2(t)| ≤M
√
te(||A

−1||LgLa+MLf+MLaLgT )T ||Bu1 −Bu2||L2(0,t;H).

Therefore, (4.2) holds. 2

Theorem 4.3. Under the Assumptions (A1), (F1), (G1) and (S), the system (4.1)
is approximately controllable on [0, T ].

Proof. Let us define a reachable set for the system (4.1):

RT = {x(T ; f, u) : u ∈ L2(0, T ;U)}.

Then we will show that D(A) ⊂ RT , i.e., for given ε > 0 and ξT ∈ D(A) there
exists u ∈ L2(0, T ;U) such that

|ξT − x(T ; f, u)| < ε.

Noting that

g(t,

∫ t

0

a(t, s, x(s))ds) =

∫ t

0

S(t− s)
{
g(t,

∫ t

0

a(t, s, x(s))ds)

+ sAg(t,

∫ t

0

a(t, s, x(s))ds)/t
}
ds,

the solution of (4.1) is represented as

x(t; f, u) = S(t)x0 +

∫ t

0

S(t− s)G(s, x(s; f, u))ds+

∫ t

0

S(t− s)Bu(s)}ds, t ≤ T,

where

G(s, x(s)) =g(t,

∫ t

0

a(t, s, x(s))ds) + sAg(t,

∫ t

0

a(t, s, x(s))ds)/t+ f(s, x(s))(4.7)

+Ag
(
s,

∫ s

0

a(s, τ, x(τ))dτ
)
.

As ξT ∈ D(A) there exists a h ∈ L2(0, T ;H) such that

Ŝh = ξT − S(T )x0,
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for instance, take h(s) = (ξT +sAξT )−S(s)x0/T . Let u1 ∈ L2(0, T ;U) be arbitrary
fixed. Since by Assumption (S) there exists u2 ∈ L2(0, T ;U) such that

|Ŝ(h−G( · , x( · , f, u1)))− ŜBu2| <
ε

4
,

it follows
|ξT − S(T )x0 − ŜG( · , x( · f, u1))− ŜBu2| <

ε

4
.

We can also choose w2 ∈ L2(0, T ;U) by Assumption (S) such that

(4.8) |Ŝ(G( ·x( · ; g, f, u2))−G( ·x( · ; g, f, u1))− ŜBw2| <
ε

8

and by Assumption (S)

‖Bw2||L2(0,t;H ≤ q||G( · , x( · ; f, u1))−G( · , x( · ; f, u2))||L2(0,t;H)

for 0 ≤ t ≤ T . Choose a constant r1 satisfying

||x( · ; f, u1)||C([0,t];H) ≤ r1, ||x( · ; f, u2)||C([0,t];H) ≤ r1.

According to a simple calculation of (4.7), from Lemma 4.1 we have

|G(s, x(s; f, u1))−G(s, x(s; f, u2))|
(4.9)

≤
{

(||A−1||+ 2)LaLgT + Lf
}
||x( · ; f, u1)− x( · ; f, u2)||C([0,t];H), s ∈ (0, t],

≤
{

(||A−1||+ 2)LaLgT + Lf
}
MeM3(r1)

√
t||Bu1 −Bu2||L2(0,T ;H)

where M3 is the constant of (4.3). For the sake of simplicity, set

L̂ :=
{

(||A−1||+ 2)LaLgT + Lf
}
MeM3 , r > 0.

Thus, in view of (4.9) and Assumption (S), we see

||Bw2||L2(0,t;H) ≤ q{
∫ t

0

|G(τ, x(τ ; f, u2))−G(τ, x(τ ; f, u1))|2dτ} 1
2

≤ qL̂{
∫ t

0

τ ||Bu2 −Bu1||2L2(0,τ ;H)dτ}
1
2

≤ qL̂(

∫ t

0

τdτ)
1
2 ||Bu2 −Bu1||L2(0,t;H)

= qL̂(
t2

2
)

1
2 ||Bu2 −Bu1||L2(0,t;H).

Put u3 = u2 − w2. We determine w3 such that

|Ŝ(G( · , x( · ; f, u3))−G( · , x( · ; f, u2)))− ŜBw3| <
ε

8
,

||Bw3||L2(0,t;H) ≤ q||G( · , x( · ; f, u3))−G( · , x( · ; f, u2))||L2(0,t;H)
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for 0 ≤ t ≤ T . Let r2 be a constant satisfying r2 ≥ r1 and

||x( · ; f, u3)||C([0,t];H) ≤ r2.

Then, we have

||Bw3||L2(0,t;H)

≤ q{
∫ t

0

||G(τ, x(τ ; f, u3))−G(τ, x(τ ; f, u2))||2dτ} 1
2

≤ qL̂{
∫ t

0

τ ||Bu3 −Bu2||2L2(0,τ ;H)dτ}
1
2

≤ qL̂{
∫ t

0

τ ||Bw2||2L2(0,τ ;H)dτ}
1
2

≤ qL̂{
∫ t

0

τ(qL̂)2
τ2

2
||Bu2 −Bu1||2L2(0,τ ;H)dτ}

1
2

≤ q2L̂2(

∫ t

0

τ3

2
dτ)

1
2 ||Bu2 −Bu1||L2(0,t;H)

= q2L̂2(
t4

2 · 4
)

1
2 ||Bu2 −Bu1||L2(0,t;H).

By proceeding this process, the following holds

||B(un − un+1)||L2(0,t;H) = ||Bwn||L2(0,t;H)

≤ qn−1L̂n−1(
t2n−2

2 · 4 · · · (2n− 2)
)

1
2 ||Bu2 −Bu1||L2(0,t;H)

= (
tq√

2
)n−1L̂n−1

1√
(n− 1)!

||Bu2 −Bu1||L2(0,t;H),

it follows that

∞∑
n=1

||Bun+1 −Bun||L2(0,T ;H)

≤
∞∑
n=0

(
tq√

2
)nL̂n)

1√
n!
||Bu2 −Bu1||L2(0,T ;H) <∞.

Therefore, by virtue of Assumption (F1), there exists u∗ ∈ L2(0, T ;U) such that

(4.10) lim
n→∞

Bun = u∗ in L2(0, T ;H).
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From (4.8), (4.9) it follows that

|ξT − S(T )g − ŜG(·, x(·; f, u2))− ŜBu3|
= |ξT − S(T )g − ŜG(·, x(·; f, u1))− ŜBu2 + ŜBw2

− Ŝ[G(·, x(·; f, u2))−G(·, x(·; f, u1))]|

< (
1

22
+

1

23
)ε.

By choosing choose wn ∈ L2(0, T ;U) by the Assumption (S) such that

|Ŝ(G( ·x( · ; f, un))−G( ·x( · ; f, un−1))− ŜBwn| <
ε

2n+1
,

putting un+1 = un − wn, we have

|ξT − S(T )g − ŜG(·, x(·; f, un))− ŜBun+1|

< (
1

22
+ · · ·+ 1

2n+1
)ε, n = 1 2, · · ·.

Therefore, for ε > 0 there exists integer N such that

||ŜBuN+1 − ŜBuN || <
ε

2

and

|ξT − S(T )g − ŜG(·, x(·; f, uN ))− ŜBuN |
≤ |ξT − S(T )g − ŜG(·, x(·; f, uN ))− ŜBuN+1|+ |ŜBuN+1 − ŜBuN |

< (
1

22
+ · · ·+ 1

2N+1
)ε+

ε

2
≤ ε.

Thus the system (4.1) is approximately controllable on [0, T ] as N tends to infinity.
2

5. Example

Let
H = L2(0, π), V = H1

0 (0, π), V ∗ = H−1(0, π).

Consider the following semilinear neutral differential control system in Hilbert space
H:


dα

dtα [x(t, y) +
∑∞
n=1

∫ T
0
en

2(t−s)(
∫ t
0
a(t+ s)x(s, y)ds)dt = Ax(t, y)

+ σ(x(t,y)−x(0,y))
1+|x(t,y)−x(0,y)| + (Bu(t))(y), (t, y) ∈ [0, T ]× [0, π], σ > 0,

x(0, y) = x0(y), y ∈ [0, π],

(5.1)
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where h > 0, a1(·) is Hölder continuous, and A1 ∈ L(H). Let

a(u, v) =

∫ π

0

du(y)

dy

dv(y)

dy
dy.

Then

A = ∂2/∂y2 with D(A) = {x ∈ H2(0, π) : x(0) = x(π) = 0}.

The eigenvalue and the eigenfunction ofA are λn = −n2 and zn(y) = (2/π)1/2 sinny,
respectively. Moreover,

(a1) {zn : n ∈ N} is an orthogonal basis of H and

S(t)x =

∞∑
n=1

en
2t(x, zn)zn, ∀x ∈ H, t > 0.

Moreover, there exists a constant M such that ||S(t)||L(H) ≤M .

(a2) Let 0 < α < 1. Then the fractional power Aα : D(Aα) ⊂ H → H of A is
given by

Aαx =

∞∑
n=1

n2α(x, zn)zn, D(Aα) := {x : Aαx ∈ H}.

In particular,

A−1/2x =

∞∑
n=1

1

n
(x, zn)zn, and ||A−1/2|| = 1.

The nonlinear mapping that appears on the control system for a diffusion and
reaction process in an enzyme membrane is defined as

f(x(t, y)) =
σ(x(t, y)− x(0, y))

1 + |x(t, y)− x(0, y)|
.

Then since

|f(x1(t, y))− f(x2(t, y))| ≤
σ
(
1 + 2|x2(t, y)− x(0, y)|

)
· |x1(t, y)− x2(t, y)|

(1 + |x1(t, y)− x(0, y)|)(1 + |x2(t, y)− x(0, y)|
,

we can see that f satisfies Assumption (F1).
Define g : [0, T ]×H → H as

g(t,

∫ t

0

a(t, s, x(s))ds) =

∞∑
n=1

∫ T

0

en
2(t−s)(

∫ t

0

a(t+ s)x(s, y)ds)dt, , t > 0.
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Then it can be checked that Assumption (G) is satisfied. Indeed, for x ∈ Π, we
know

Ag(t,

∫ t

0

a(t, s, x(s))ds) = (I − S(t))

∫ t

0

a(t+ s)x(s, y)ds)dt,

where I is the identity operator form H to itself and, we assume that there is a
constant ρ > 0 such that

|a(0)| ≤ ρ, |a(s)− a(τ)| ≤ ρ(s− τ)κ, s, τ ∈ [0, T ]

for a constant κ > 0. Hence we have

|Ag(t,

∫ t

0

a(t, s, x(s))ds)| ≤(M + 1)
{∣∣ ∫ t

0

(a(t+ s)− a2(0))x(s)ds
∣∣

+
∣∣ ∫ t

0

a(0)x(s)ds
∣∣}

≤(M + 1)ρ
{

(2κ+ 1)−1h2κ+1 + h
}
||x||L2(0,T ;V ).

It is immediately seen that Assumption (G1) has been satisfied. A simple example of
the controller operator B which satisfies Assumption (S) is introduced by Naito [16]
as follows. Consider H = U and define the intercept operator B(α,T ), 0 < α < T ,
on L2(0, T ;H) by

(B(α,T )u)(t) =

{
0, 0 ≤ t < α

u(t), α ≤ t ≤ T, u ∈ L2(0, T ;H).

Then as seen in [16], for a given p ∈ L2(0, T ;H) there exists a control u ∈
L2(0, T ;H)such that Ŝp = ŜB(α,T )u. Thus, all the conditions stated in Theo-
rem 3.1 have been satisfied for the equation (5.1), and so there exists a solution
of (5.1) belongs to W1(T ) = L2(0, T ;V )) ∩W 1,2(0, T ;V ∗) ↪→ C([0, T ];H), and by
virtue of Theorem 4.1, the system (4.1) is approximately controllable on [0, T ].
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