• Title/Summary/Keyword: Fractional Derivative

Search Result 175, Processing Time 0.028 seconds

SOLVABILITY FOR A CLASS OF FDES WITH SOME (e1, e2, θ)-NONLOCAL ANTI PERIODIC CONDITIONS AND ANOTHER CLASS OF KDV BURGER EQUATION TYPE

  • Iqbal Jebril;Yazid GOUARI;Mahdi RAKAH;Zoubir DAHMANI
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1017-1034
    • /
    • 2023
  • In this paper, we work two different problems. First, we investigate a new class of fractional differential equations involving Caputo sequential derivative with some (e1, e2, θ)-periodic conditions. The existence and uniqueness of solutions are proven. The stability of solutions is also discussed. The second part includes studying traveling wave solutions of a conformable fractional Korteweg-de Vries-Burger (KdV Burger) equation through the Tanh method. Graphs of some of the waves are plotted and discussed, and a conclusion follows.

A NONRANDOM VARIATIONAL APPROACH TO STOCHASTIC LINEAR QUADRATIC GAUSSIAN OPTIMIZATION INVOLVING FRACTIONAL NOISES (FLQG)

  • JUMARIE GUY
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.19-32
    • /
    • 2005
  • It is shown that the problem of minimizing (maximizing) a quadratic cost functional (quadratic gain functional) given the dynamics dx = (fx + gu)dt + hdb(t, a) where b(t, a) is a fractional Brownian motion of order a, 0 < 2a < 1, can be solved completely (and meaningfully!) by using the dynamical equations of the moments of x(t). The key is to use fractional Taylor's series to obtain a relation between differential and differential of fractional order.

SOME FAMILIES OF INFINITE SUMS DERIVED BY MEANS OF FRACTIONAL CALCULUS

  • Romero, Susana Salinas De;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.135-146
    • /
    • 2001
  • Several families of infinite series were summed recently by means of certain operators of fractional calculus(that is, calculus of derivatives and integrals of any real or complex order). In the present sequel to this recent work, it is shown that much more general classes of infinite sums can be evaluated without using fractional calculus. Some other related results are also considered.

  • PDF

ITERATED LEFT ABSTRACT FRACTIONAL LANDAU INEQUALITIES

  • ANASTASSIOU, GEORGE A.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.559-577
    • /
    • 2020
  • We present uniform and Lp left Caputo-Bochner abstract iterated fractional Landau inequalities over ℝ+. These estimate the size of second and third iterated left abstract fractional derivates of a Banach space valued function over ℝ+. We give an application when the basic fractional order is ${\frac{1}{2}}$.

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

Robustness of optimized FPID controller against uncertainty and disturbance by fractional nonlinear model for research nuclear reactor

  • Zare, Nafiseh;Jahanfarnia, Gholamreza;Khorshidi, Abdollah;Soltani, Jamshid
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2017-2024
    • /
    • 2020
  • In this study, a fractional order proportional integral derivative (FOPID) controller is designed to create the reference power trajectory and to conquer the uncertainties and external disturbances. A fractional nonlinear model was utilized to describe the nuclear reactor dynamic behaviour considering thermal-hydraulic effects. The controller parameters were tuned using optimization method in Matlab/Simulink. The FOPID controller was simulated using Matlab/Simulink and the controller performance was evaluated for Hard variation of the reference power and compared with that of integer order a proportional integral derivative (IOPID) controller by two models of fractional neutron point kinetic (FNPK) and classical neutron point kinetic (CNPK). Also, the FOPID controller robustness was appraised against the external disturbance and uncertainties. Simulation results showed that the FOPID controller has the faster response of the control attempt signal and the smaller tracking error with respect to the IOPID in tracking the reference power trajectory. In addition, the results demonstrated the ability of FOPID controller in disturbance rejection and exhibited the good robustness of controller against uncertainty.

Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.217-225
    • /
    • 2020
  • In this paper, the thermoelastic interactions in a two-dimension porous body are studied. This problem is solved by using the Green and Lindsay (GL) generalized thermoelasticity model under fractional time derivative. The derived approaches are estimated. with numeral results which are applied to the porous mediums in simplifying geometrical. The bounding plane surface of the present half-space continuum is subjected to a pulse heat flux. We use the Laplace-Fourier transforms methods with the eigenvalues approach to solve the problem. The numerical solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The effects of the fractional parameter and the thermal relaxation times on the temperature field, the displacement field, the change in volume fraction field of voids distribution and the stress fields have been calculated and displayed graphically and the obtained results are discussed.

SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Yang, Yin;Chen, Yanping;Huang, Yunqing
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.203-224
    • /
    • 2014
  • We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of Fredholm-Volterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

Modeling of fractional magneto-thermoelasticity for a perfect conducting materials

  • Ezzat, M.A.;El-Bary, A.A.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.707-731
    • /
    • 2016
  • A unified mathematical model of the equations of generalized magneto-thermoelasticty based on fractional derivative heat transfer for isotropic perfect conducting media is given. Some essential theorems on the linear coupled and generalized theories of thermoelasticity e.g., the Lord- Shulman (LS) theory, Green-Lindsay (GL) theory and the coupled theory (CTE) as well as dual-phase-lag (DPL) heat conduction law are established. Laplace transform techniques are used. The method of the matrix exponential which constitutes the basis of the state-space approach of modern theory is applied to the non-dimensional equations. The resulting formulation is applied to a variety of one-dimensional problems. The solutions to a thermal shock problem and to a problem of a layer media are obtained in the present of a transverse uniform magnetic field. According to the numerical results and its graphs, conclusion about the new model has been constructed. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.

QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS

  • Khaminsou, Bounmy;Thaiprayoon, Chatthai;Sudsutad, Weerawat;Jose, Sayooj Aby
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.197-223
    • /
    • 2021
  • In this paper, we investigate existence, uniqueness and four different types of Ulam's stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and $Krasnosel^{\prime}ski{\breve{i}}{^{\prime}}s$ fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.