• 제목/요약/키워드: Foundation conditions

검색결과 1,093건 처리시간 0.024초

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design

  • Won, Jinoh;Lee, Jin Hyung;Cho, Chunwhan
    • 국제초고층학회논문집
    • /
    • 제4권4호
    • /
    • pp.271-281
    • /
    • 2015
  • This paper introduces detailed three-dimensional numerical analyses on a bored pile foundation for a high-rise building. A static load test was performed on a test pile and a numerical model of a single pile, which was calibrated by comparing it with the test result. The detailed numerical analysis was then conducted on the entire high-rise building foundation. Further study focused on soil pressures under the base slab of a piled raft foundation. Total seven cases with different pile numbers and raft-soil contact conditions were investigated. The design criteria of a foundation, especially settlement requirement were satisfied even for the cases with fewer piles under considerable soil pressure beneath the base slab. The bending moment for the structural design of the base slab was reduced by incorporating soil pressures beneath the base slab along with bored piles. Through the comparative studies, it was found that a more efficient design can be achieved by considering the soil pressure beneath the slab.

국외 초고층 건축물의 대형기초 적용 사례 (A Case Study on the Design of High Capacity Foundations for High-Rise Buildings)

  • 조성한;한병권;이제만;김태범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.78-89
    • /
    • 2007
  • Two design examples of deep foundations for high-rise buildings on soft ground are introduced in this paper. The first one is a 54-story building in Ho-Chi-Minh city, Vietnam, which was designed to be founded on $2.8m{\times}1.0m$ barrette foundations with approximately 60m to 75m depth. Based on a number of design guides and existing load test data from the construction sites in Ho-Chi-Minh city, the capacity of a barrette foundation in sand or clay layered ground was calculated to be 17.2MN to 27.8MN depending on the installing depth. The second one is a 40-story building in Baku city, Azerbaijan, which was designed to be supported by 2.0m diameter bored pile foundations with approximately 23m depth. As analytical or empirical guides for the local ground conditions were very limited, the design procedure from the SNiP Code, one of Russian specifications, was adopted and used to calculate the pile capacity. The capacity of bored pile foundation in highly weathered soil was expected to be 14.8MN to 15.5MN depending on the boring depth.

  • PDF

원심모형실험에 의한 시멘트 개량말뚝으로 보강된 연약점토지반의 거동에 관한 연구 (A Study on the Behavior of Soft Clay Foundation Reinforced with Soil Cement Piles by Centrifugal Model Tests)

  • 이처근;신방웅;허열;안상로
    • 한국지반공학회지:지반
    • /
    • 제10권2호
    • /
    • pp.109-120
    • /
    • 1994
  • 해안지역에서 토류구조물을 축조하는 동안에 직면하게 되는 문제점중의 하나는 연약점토지반의 안정화 대책이다. 본 연구는 성토제체 축조시 연약점토지반의 안정화를 위하여 시멘트 개량 말뚝으로 보강된 연약지반의 거동효과를 구명하고자 원심모형실험을 수행한 것으로 서로 다른 조건에 대해서 단계 하중하에서 시간에 따른 보강지반과 비보강지반의 침하와 융기거동을 고찰하였다. 실헙결과 지반의 수직침하감수 제방에 인접한 지표면의 융기감소는 개량말뚝의 강도, 점토의 함수비 그리고 특히 개량면적비에 크게 영향을 받는 것으로나타났다.

  • PDF

고대구조물의 기초공법에 관한 연구 (A Study on Foundation Methods of Ancient Structures)

  • 정형식;손영식
    • 한국지반공학회지:지반
    • /
    • 제8권3호
    • /
    • pp.75-88
    • /
    • 1992
  • 본 연구는 삼국시대로부터 각종 구조물을 축조할 때 구조물의 안정을 기하기 위하여 구조물별로 어떠한 기기공법을 사용하였는지 적적을 통하여 검토하였다. 조사결과 기원전후에 이미 각종 구조물의 형태와 지반조건을 감안하여 다양한 기초공법이 적용되어 왔음을 알 수 있다. 이들 고대 기초공법을 형식별로 분류하여 보면 하중이 큰 구조물에는 판축기기, 성곽 등 하중이 넓게 분포된 구조물에는 보토다짐 기초, 일반건축물에는 적심기초, 궁궐 등 특수건축물에는 장대석기초, 교량 등 습지에는 말뚝기초등이 사용되었다. 그리고 이러한 기초공법들이 오늘날의 관점에서 어떠한 의미를 갖는지에 대하여 검토하였다.

  • PDF

Foundation Design Practice for Highrise Buildings in Korea

  • Kim, Sungho;Hong, Seunghyeun;Choi, Yongkyu
    • 국제초고층학회논문집
    • /
    • 제4권4호
    • /
    • pp.291-310
    • /
    • 2015
  • It is common for tall buildings in Korea to have a ground response that is highly sensitive to the behavior of the structure. Therefore, the geology of the ground needs to be carefully assessed and considered in the design process to accurately predict the performance of the foundation system. This paper sets out a systematic design approach and ground investigation methodology for the soil conditions frequently encountered in Korea. Various foundation design methods are introduced along with several case studies conducted in Korea.

비균질 지반위에 놓여있는 보의 고유진동수 (Natural Frequencies of a Beam on Inhomogeneous Foundation)

  • 김용철
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.69-77
    • /
    • 1992
  • The natural frequencies of a beam on elastic foundation are investigated in the present paper. The inhomogeneous elastic foundation can be modelled as a combination of distributed translational spring, rotational spring, intermediate supports and dampers. The natural frequencies and mode shapes of the system are obtained by using the Galerkin's method, and also compared with the results in the literature. Furthermore, the natural frequencies of the beam with elastically mounted masses, which can be used as vibration absorbers, are obtained by an efficient numerical scheme suggested in the present paper.

  • PDF

2층 탄성기초위에 놓인 불균일 테이퍼진 보의 진동과 안정성 (Vibration and Stability of Non-uniform Tapered Beams resting on a Two-Layered Elastic Foundation)

  • 류봉조;임경빈;이종원;한재섭
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.828-834
    • /
    • 1999
  • The paper describes the vibration and the stability of nonuniform tapered beams resting on two-layered elastic foundations. The two-layered elastic foundations are constructed by discributed Winkler springs and shearing layers as ofen used in oil models. Governing equations are derived from energy experssions using Hamilton's Principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration and the stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies and critical forces are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters, and boundary conditions of tapered beams.

  • PDF

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Buckling analysis of embedded concrete columns armed with carbon nanotubes

  • Arani, Ali Jafarian;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.567-578
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli and Timoshenko beam theories. The characteristics of the equivalent composite being determined using mixture rule. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.