• Title/Summary/Keyword: Forward osmosis (FO)

Search Result 49, Processing Time 0.02 seconds

Forward Osmosis Membrane to Treat Effluent from Anaerobic Fluidized Bed Bioreactor for Wastewater Reuse Applications (하수재이용을 위한 혐기성 유동상 생물반응기 처리수의 정삼투 여과막의 적용)

  • Kwon, Dae-eun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.196-204
    • /
    • 2018
  • The anaerobic fluidized bed bioreactor (AFBR) treating synthetic wastewater to simulate domestic sewage was operated under GAC fluidization to provide high surface area for biofilm formation. Although the AFBR achieves excellent COD removal efficiency due to biological activities, concerns are still made with nutrient such as nitrogen remaining in the effluent produced by AFBR. In this study, forward osmosis membrane was applied to treat the effluent produced by AFBR to investigate removal efficiency of total nitrogen (TN) with respect to the draw solution (DS) such as NaCl and glucose. Permeability of FO membrane increased with increasing DS concentration. About 55% of TN removal efficiency was observed with the FO membrane using 1 M of NaCl of draw solution, but almost complete TN removal efficiency was achieved with 1 M of glucose of draw solution. During 24 h of filtration, there was no permeate flux decline with the FO membrane regardless of draw solution applied.

Preparation and Characterization of Cellulosic Forward Osmosis Membranes (셀룰로오스 계 고분자를 이용한 정삼투막의 제조 및 특성)

  • Jeong, Bo-Reum;Kim, Jong-Hak;Kim, Beom-Sik;Park, Yoo-In;Song, Du-Hyun;Kim, In-Chul
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.222-227
    • /
    • 2010
  • The purpose of this study is to prepare forward osmosis (FO) membranes using a variety of cellulose-based polymers and to evaluate the performance of difference depending on each of the polymers and additives. Forward osmosis membranes based on cellulose acetate (CA) and cellulose triacetate (CTA) were prepared through phase inversion. The performance of FO membranes developed, such as flux and salt rejection, was compared under the osmotically- and pressure-driven conditions. In CA FO membranes, the execution time of solvent evaporation and membrane annealing induced the change in membrane performance. But the performance of CTA FO membrane was improved by using additives rather than annealing. Moreover, the flux of CTA FO membrane was $4.46\;L/m^2hr$ but that of CA/CTA FO membrane was $8.89\;L/m^2hr$ in FO mode. The CTA FO membrane with blending CA was more efficient to increase FO permeate flow rather than using a single polymer membrane.

Performance Analysis of Plate-and-Frame Forward Osmosis Membrane Module for Concentrating High Salinity Wastewater (고염도 폐수 농축을 위한 평판형 정삼투막 모듈의 성능 분석)

  • Kim, Yu Chang;Lee, Sungyun;Park, Sang-Jin;Kim, Han Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.68-74
    • /
    • 2016
  • Hydraulic fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates larger volumes of contaminated wastewater with high salinity. It is critical to treat and reuse the O&G wastewater in a cost-effective and environmentally sound manner for sustainable industrial development and for meeting stringent regulations. Recently, forward osmosis (FO) has been examined if it is a promising solution for treatment and desalination of complex industrial streams and especially fracturing flowback and produced waters. In the present study, the performances of a plate-and-frame FO membrane element and a module (6 elements combined in series) were investigated for concentrating high TDS wastewater. An FO module has achieved up to 64 % water recovery (i.e., concentration factor of 2.76) from 10,000 ppm wastewaters and can concentrate feed streams salinities to greater than 30,500 ppm.

Preparation of Cellulose Acetate Membrane and Its Evaluation as a Forward Osmosis Membrane (셀룰로오스 아세테이트 분리막 제조 및 정삼투 성능 평가)

  • Ahn, Hyeryun;Kim, Jinhong;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2014
  • In this study, cellulose acetate (CA) membrane was prepared by phase inversion precipitation and then evaluated the forward osmosis (FO) membrane performance. Differences in water flux and salt rejection between RO and FO with prepared membranes were observed. The different structure membranes were prepared with various solvent which evaluate the influence of membrane structure on permeability. The structure of the prepared membrane was confirmed through scanning electron microscopy (SEM) and the permeability changes were estimated using the bench-scale FO test equipment.

Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis

  • Teoh, May May;Wang, Kai Yu;Bonyadi, Sina;Yang, Qian;Chung, Tai-Shung
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2011
  • The deficiency of clean water is a major global concern because all the living creatures rely on the drinkable water for survival. On top of this, abundant of clean water supply is also necessary for household, metropolitan inhabitants, industry, and agriculture. Among many purification processes, advances in low-energy membrane separation technology appear to be the most effective solution for water crisis because membranes have been widely recognized as one of the most direct and feasible approaches for clean water production. The aim of this article is to give an overview of (1) two new emerging membrane technologies for water reuse and desalination by forward osmosis (FO) and membrane distillation (MD), and (2) the molecular engineering and development of highly permeable hollow fiber membranes, with polyvinylidene fluoride (PVDF) and polybenzimidazole (PBI) as the main focuses for the aforementioned applications in National University of Singapore (NUS). This article presents the main results of membrane module design, separation performance, membrane characteristics, chemical modification and spinning conditions to produce novel hollow fiber membranes for FO and MD applications. As two potential solutions, MD and FO may be synergistically combined to form a hybrid system as a sustainable alternative technology for fresh water production.

Systematic study on calcium-dissolved organic matter interaction in a forward osmosis membrane-filtration system (정삼투 멤브레인 공정에서 칼슘이온과 용존 유기물 상호작용에 의한 플럭스 변화 연구)

  • Heo, Jiyong;Han, Jonghun;Kim, Yejin;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.737-744
    • /
    • 2016
  • The investigation of effects on fouling propensity with various viscosity of feed solutions would be better understanding for forward osmosis (FO) performance since the fouling propensity was directly influenced with solution viscosity. Therefore, this study was focused on the FO fouling with model foultants (humic acid, alginate) by altering solution viscosity with change of ionic strength (I.S) and $Ca^{2+}$ concentrations. In the comparison between humic acid and alginate, as expected, the alginate generally caused more severe fouling (almost 35.8 % of flux reduction) based on the solution characteristics (high viscosity) and fouling patterns (coil and gel layer). However, interesting point to note is that the fouling propensity of alginate was more severe even though it was applied with low viscosity of feed conditions (I.S = 20 mM, $Ca^{2+}=1mM$). This might be due to that crossed linked gel layer of alginate on the FO membrane surface could be best formed in the condition of $Ca^{2+}$ presence and higher I.S, and that is more dominant to fouling propensity than the low viscosity of feed solutions.

Pore Structure and Separation Properties of Thin Film Composite Forward Osmosis Membrane with Different Support Structures (지지층 구조가 다른 복합 정삼투막의 기공구조와 분리 특성)

  • Ahn, Soo-Hyun;Kim, In-Chul;Song, Doo-Hyun;Jegal, Jonggeon;Kwon, Young-Nam;Rhee, Hee-Woo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.251-256
    • /
    • 2013
  • In this study, acetylated methyl cellulose (AMC) was successfully used as a support layer of thin film composite (TFC) forward osmosis (FO) membrane. A selective polyamide active layer, interfacially polymerized, was coated on top of various substrate layers. The structure and performance of the TFC FO membrane based on the AMC substrate were compared with those of TFC FO membranes with different polymeric support layers. The experimental results showed that the AMC FO membrane performance was better than other FO membranes due to its characteristic morphology and lower back diffusion rate of salts.

Temperature-Sensitive Polymers Adhered on FO Membrane as Drawing Agents (자극감응성 유도용질로서 정삼투막에 부착된 온도감응성 고분자)

  • Lee, Chong-Cheon;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.626-631
    • /
    • 2014
  • Water purification requires a large amount of energy that can cause pollution problems. For this reason, forward osmosis (FO) has attracted intense interest that required a relatively low amount of energy for water purification. The forward osmosis has a serious problem that it needs drawing agents creating osmotic pressure to extract water from contaminated water. In this study, a copolymer of zwitterionic moiety and an interpenetrating polymer network (IPN) hydrogel based on thermo-responsive polymer hydrogel, poly(N-isopropylacrylamide) (PNIPAM) were prepared and attached on FO membranes, which successfully played the role of drawing agents. In the copolymer hydrogel, its swelling ratio was improved, but thermo-sensitivity was decreased. The swelling ratio and thermo-sensitivity of IPN hydrogel was lowered. We could confirm that swelling ratio is related to osmotic pressure.

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment

  • Liu, Xiaojing;Wu, Jinling;Hou, Li-an;Wang, Jianlong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.581-588
    • /
    • 2020
  • The membrane fouling is an important problem for FO applied to the radioactive wastewater treatment. The FO fouling characteristics for simulated radioactive wastewater treatment was investigated. On-line cleaning by deionized (DI) water and external cleaning by ultrasound and HCl were applied for the fouled membrane. The effectiveness and foulant removing amount by each-step cleaning were evaluated. The membrane fouling was divided into three stages. Co(II), Sr(II), Cs(I), Na(I) were all found deposited on both active and support layers of the membrane surface, resulting in membrane surface became rougher and more hydrophobic, which increased membrane resistance. On-line cleaning by DI water recovered the water flux to 69%. HCl removed more foulants than ultrasound.