Preparation and Characterization of Cellulosic Forward Osmosis Membranes

셀룰로오스 계 고분자를 이용한 정삼투막의 제조 및 특성

  • Jeong, Bo-Reum (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jong-Hak (Department of Chemical & Biomolecular Engineering, Yonsei University) ;
  • Kim, Beom-Sik (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Yoo-In (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Song, Du-Hyun (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, In-Chul (Environment & Resources Research Center, Korea Research Institute of Chemical Technology)
  • 정보름 (한국화학연구원 환경자원연구센터) ;
  • 김종학 (연세대학교 화공생명공학과) ;
  • 김범식 (한국화학연구원 환경자원연구센터) ;
  • 박유인 (한국화학연구원 환경자원연구센터) ;
  • 송두현 (한국화학연구원 환경자원연구센터) ;
  • 김인철 (한국화학연구원 환경자원연구센터)
  • Received : 2010.08.27
  • Accepted : 2010.09.14
  • Published : 2010.09.30

Abstract

The purpose of this study is to prepare forward osmosis (FO) membranes using a variety of cellulose-based polymers and to evaluate the performance of difference depending on each of the polymers and additives. Forward osmosis membranes based on cellulose acetate (CA) and cellulose triacetate (CTA) were prepared through phase inversion. The performance of FO membranes developed, such as flux and salt rejection, was compared under the osmotically- and pressure-driven conditions. In CA FO membranes, the execution time of solvent evaporation and membrane annealing induced the change in membrane performance. But the performance of CTA FO membrane was improved by using additives rather than annealing. Moreover, the flux of CTA FO membrane was $4.46\;L/m^2hr$ but that of CA/CTA FO membrane was $8.89\;L/m^2hr$ in FO mode. The CTA FO membrane with blending CA was more efficient to increase FO permeate flow rather than using a single polymer membrane.

본 연구의 목적은 다양한 셀룰로오스 계 고분자를 이용한 정삼투(FO) 막을 제조하고 각각의 고분자 및 첨가제에 따른 성능의 차이를 평가하는 것이다. 셀룰로오스 아세테이트(CA)와 셀룰로오스 트리아세테이트(CTA)를 기반으로 상전환법을 통하여 정삼투막을 제조하고 가압조건과 정삼투 조건하에서 투과유량 및 염제거율을 비교하였다. CA 정삼투막은 용매의 증발 및 annealing 수행 시간에 따라 막의 성능의 변화가 발생하였으며, CTA 정삼투막의 경우에는 annealing보다는 첨가제를 활용하여 성능의 향상을 이끌어낼 수 있었다. 또한 CTA 정삼투막의 정삼투 투과유량은 $4.46\;L/m^2hr$였으나 CA/CTA 정삼투막의 경우에는 $8.89\;L/m^2hr$로, 단일 고분자를 사용하기 보다는 CTA에 CA를 혼합하여 막을 제조하는 것이 정삼투 투과유량 증가에 보다 효율적이었다.

Keywords

References

  1. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination 174, 1 (2005). https://doi.org/10.1016/j.desal.2004.11.002
  2. B. Cai, Y. Zhou, and C. Gao, "Modified performance of cellulose triacetate hollow fiber membrane", Desalination, 146, 331 (2002). https://doi.org/10.1016/S0011-9164(02)00507-6
  3. A. M. Farooque, A. A1-Amoudi, and K. Numata, "Degradation study of cellulose triacetate hollow fine-fiber SWRO membranes", Desalination, 123, 165 (1999). https://doi.org/10.1016/S0011-9164(99)00070-3
  4. J. H. Hao and S. Wang, "Influence of quench medium on the structure and gas permeation properties of cellulose acetate membranes", JAPS, 68, 1269 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980523)68:8<1269::AID-APP8>3.0.CO;2-B
  5. J. Su, Q. Yang, J. F. Teo, and T. S. Chung, "Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes", J. Membr. Sci., 355, 36 (2010). https://doi.org/10.1016/j.memsci.2010.03.003
  6. J. S. Gardner, J. O. Walker, and J. D. Lamb, "Permeablilty and durability effects of cellulose polymer variation in polymer inclusion membranes", J. Membr. Sci., 229, 87 (2004). https://doi.org/10.1016/j.memsci.2003.09.017
  7. L. Katelan-Kunst, V. Dananir, B. Kunst, and K. Kosutic, "Preparation and porosity of cellulose triacetate reverse osmosis membranes", J. Membr. Sci., 109, 223 (1996). https://doi.org/10.1016/0376-7388(95)00191-3
  8. B. Cai, Y. Zhou, J. Hu, L. Zhu, C. Wu, and C. Gao, "Solvent treatment of CTA hollow fiber membrane and its pervaporation performance for organic/ organic mixture", Desalination, 151, 117 (2002).
  9. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  10. E. G. Beaudry and J. R. Herron, "Direct osmosis for concentrating wastewater, in: Proceedings of the 27th International Conference on Environmental Systems", Lake Tahoe, NV, July 14-17 (1997).
  11. T. Y. Cath, V. D. Adams, and A. E. Childress, "Membrane contactor processes for wastewater reclamation in space. II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater", J. Membr. Sci., 257, 111 (2005). https://doi.org/10.1016/j.memsci.2004.07.039
  12. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "Desalination by a novel ammonia-carbon dioxide forward osmosis process: influence of draw and feed solution concentrations on process performance", J. Membr. Sci., 278, 114 (2006). https://doi.org/10.1016/j.memsci.2005.10.048