DOI QR코드

DOI QR Code

Fouling and cleaning protocols for forward osmosis membrane used for radioactive wastewater treatment

  • Liu, Xiaojing (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University) ;
  • Wu, Jinling (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University) ;
  • Hou, Li-an (Xi'an High Technology Institute) ;
  • Wang, Jianlong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University)
  • Received : 2019.03.22
  • Accepted : 2019.08.10
  • Published : 2020.03.25

Abstract

The membrane fouling is an important problem for FO applied to the radioactive wastewater treatment. The FO fouling characteristics for simulated radioactive wastewater treatment was investigated. On-line cleaning by deionized (DI) water and external cleaning by ultrasound and HCl were applied for the fouled membrane. The effectiveness and foulant removing amount by each-step cleaning were evaluated. The membrane fouling was divided into three stages. Co(II), Sr(II), Cs(I), Na(I) were all found deposited on both active and support layers of the membrane surface, resulting in membrane surface became rougher and more hydrophobic, which increased membrane resistance. On-line cleaning by DI water recovered the water flux to 69%. HCl removed more foulants than ultrasound.

Keywords

References

  1. J.L. Wang, S.T. Zhuang, Removal of cesium ions from aqueous solutions using various separation technologies, Rev. Environ. Sci. Biotechnol. 18 (2019) 231-269. https://doi.org/10.1007/s11157-019-09499-9
  2. Y.W. Chen, J.L. Wang, Removal of radionuclide $Sr^{2+}$ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des. 242 (2012) 445-451. https://doi.org/10.1016/j.nucengdes.2011.10.059
  3. J.L. Wang, S.T. Zhuang, Y. Liu, Metal hexacyanoferrates-based adsorbents for cesium removal, Coord. Chem. Rev. 374 (2018) 430-438. https://doi.org/10.1016/j.ccr.2018.07.014
  4. S.T. Zhuang, Y.N. Yin, J.L. Wang, Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation, Nucl. Eng. Technol. 50 (2018) 211-215. https://doi.org/10.1016/j.net.2017.11.007
  5. H.Y. Liu, J.L. Wang, Treatment of radioactive wastewater using direct contact membrane distillation, J. Hazard Mater. 261 (2013) 307-315. https://doi.org/10.1016/j.jhazmat.2013.07.045
  6. X.J. Liu, J.L. Wu, C. Liu, J.L. Wang, Removal of cobalt ions from aqueous solution by forward osmosis, Separ. Purif. Technol. 177 (2017) 8-20. https://doi.org/10.1016/j.seppur.2016.12.025
  7. Q. She, R. Wang, A.G. Fane, C.Y. Tang, Membrane fouling in osmotically driven membrane processes: a review, J. Membr. Sci. 499 (2016) 201-233. https://doi.org/10.1016/j.memsci.2015.10.040
  8. B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents, J. Membr. Sci. 348 (2010) 337-345. https://doi.org/10.1016/j.memsci.2009.11.021
  9. B. Mi, M. Elimelech, Chemical and physical aspects of organic fouling of forward osmosis membranes, J. Membr. Sci. 320 (2008) 292-302. https://doi.org/10.1016/j.memsci.2008.04.036
  10. Y. Chun, F. Zaviska, E. Cornelissen, L. Zou, A case study of fouling development and flux reversibility of treating actual lake water by forward osmosis process, Desalination 357 (2015) 55-64. https://doi.org/10.1016/j.desal.2014.11.009
  11. R. Valladares Linares, V. Yangali-Quintanilla, Z. Li, G. Amy, NOM and TEP fouling of a forward osmosis (FO) membrane: foulant identification and cleaning, J. Membr. Sci. 421-422 (2012) 217-224. https://doi.org/10.1016/j.memsci.2012.07.019
  12. S. Phuntsho, F. Lotfi, S. Hong, D.L. Shaffer, M. Elimelech, H.K. Shon, Membrane scaling and flux decline during fertiliser-drawn forward osmosis desalination of brackish groundwater, Water Res. 57 (2014) 172-182. https://doi.org/10.1016/j.watres.2014.03.034
  13. S. Zhao, L. Zou, Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination, Desalination 278 (2011) 157-164. https://doi.org/10.1016/j.desal.2011.05.018
  14. L. Shi, S.H. Xie, Z.H. Hu, G.X. Wu, L. Morrison, P. Croot, H.Y. Hu, X.M. Zhan, Nutrient recovery from pig manure digestate using electrodialysis reversal: membrane fouling and feasibility of long-term operation, J. Membr. Sci. 573 (2019) 560-569. https://doi.org/10.1016/j.memsci.2018.12.037
  15. Y. Chun, D. Mulcahy, L. Zou, I. Kim, A short review of membrane fouling in forward osmosis processes, Membranes 7 (2017) 1-23. https://doi.org/10.3390/membranes7010001
  16. H. Yoon, Y. Baek, J. Yu, J. Yoon, Biofouling occurrence process and its control in the forward osmosis, Desalination 325 (2013) 30-36. https://doi.org/10.1016/j.desal.2013.06.018
  17. R. Holloway, A. Childress, K. Dennett, T. Cath, Forward osmosis for concentration of anaerobic digester centrate, Water Res. 41 (2007) 4005-4014. https://doi.org/10.1016/j.watres.2007.05.054
  18. R. Valladares Linares, V. Yangali-Quintanilla, Z. Li, G. Amy, Rejection of micropollutants by clean and fouled forward osmosis membrane, Water Res. 45 (2011) 6737-6744. https://doi.org/10.1016/j.watres.2011.10.037
  19. X. Jin, Q. She, X. Ang, C.Y. Tang, Removal of boron and arsenic by forward osmosis membrane: influence of membrane orientation and organic fouling, J. Membr. Sci. 389 (2012) 182-187. https://doi.org/10.1016/j.memsci.2011.10.028
  20. M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis, Water Res. 47 (2013) 4567-4575. https://doi.org/10.1016/j.watres.2013.05.013
  21. M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: role of initial permeate flux, Desalination 336 (2014) 146-152. https://doi.org/10.1016/j.desal.2013.12.037
  22. C. Boo, M. Elimelech, S. Hong, Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation, J. Membr. Sci. 444 (2013) 148-156. https://doi.org/10.1016/j.memsci.2013.05.004
  23. Y. Liu, B. Mi, Combined fouling of forward osmosis membranes: synergistic foulant interaction and direct observation of fouling layer formation, J. Membr. Sci. 407-408 (2012) 136-144. https://doi.org/10.1016/j.memsci.2012.03.028
  24. Y. Kim, S. Lee, H.K. Shon, S. Hong, Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures, Desalination 355 (2015) 169-177. https://doi.org/10.1016/j.desal.2014.10.041
  25. C.Y. Tang, Q. She, W.C.L. Lay, R. Wang, A.G. Fane, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration, J. Membr. Sci. 354 (2010) 123-133. https://doi.org/10.1016/j.memsci.2010.02.059
  26. M. Zhang, D. Hou, Q. She, C.Y. Tang, Gypsum scaling in pressure retarded osmosis: experiments, mechanisms and implications, Water Res. 48 (2014) 387-395. https://doi.org/10.1016/j.watres.2013.09.051
  27. V. Parida, H.Y. Ng, Forward osmosis organic fouling: effects of organic loading, calcium and membrane orientation, Desalination 312 (2013) 88-98. https://doi.org/10.1016/j.desal.2012.04.029
  28. M. Xie, W.E. Price, L.D. Nghiem, Rejection of pharmaceutically active compounds by forward osmosis: role of solution pH and membrane orientation, Separ. Purif. Technol. 93 (2012) 107-114. https://doi.org/10.1016/j.seppur.2012.03.030
  29. Q. She, X. Jin, Q. Li, C.Y. Tang, Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes, Water Res. 46 (2012) 2478-2486. https://doi.org/10.1016/j.watres.2012.02.024
  30. J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci. 284 (2006) 237-247. https://doi.org/10.1016/j.memsci.2006.07.049
  31. G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination 197 (2006) 1-8. https://doi.org/10.1016/j.desal.2006.02.003
  32. S. Lee, C. Boo, M. Elimelech, S. Hong, Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO), J. Membr. Sci. 365 (2010) 34-39. https://doi.org/10.1016/j.memsci.2010.08.036
  33. Z. Wang, J. Tang, C. Zhu, Y. Dong, Q. Wang, Z. Wu, Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment, J. Membr. Sci. 475 (2015) 184-192. https://doi.org/10.1016/j.memsci.2014.10.032
  34. A. Maartens, P. Swart, E.P. Jacobs, An enzymatic approach to the cleaning of ultrafiltration membranes fouled in abattoir effluent, J. Membr. Sci. 119 (1996) 9-16. https://doi.org/10.1016/0376-7388(96)00015-4
  35. Z. Wang, J. Ma, C.Y. Tang, K. Kimura, Q. Wang, X. Han, Membrane cleaning in membrane bioreactors: a review, J. Membr. Sci. 468 (2014) 276-307. https://doi.org/10.1016/j.memsci.2014.05.060
  36. Y. Zheng, M. Huang, L. Chen, W. Zheng, P. Xie, Q. Xu, Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes, Desalination 359 (2015) 113-122. https://doi.org/10.1016/j.desal.2014.12.009
  37. F. Kong, H. Yang, X. Wang, Y.F. Xie, Rejection of nine haloacetic acids and coupled reverse draw solute permeation in forward osmosis, Desalination 341 (2014) 1-9. https://doi.org/10.1016/j.desal.2014.02.019
  38. F. Kong, H. Yang, Y. Wu, X.Wang, Y.F. Xie, Rejection of pharmaceuticals during forward osmosis and prediction by using the solutionediffusion model, J. Membr. Sci. 476 (2015) 410-420. https://doi.org/10.1016/j.memsci.2014.11.026
  39. C. Boo, S. Lee, M. Elimelech, Z. Meng, S. Hong, Colloidal fouling in forward osmosis: role of reverse salt diffusion, J. Membr. Sci. 390-391 (2012) 277-284. https://doi.org/10.1016/j.memsci.2011.12.001
  40. S. Ding, Y. Yang, H. Huang, H. Liu, L. Hou, Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium, J. Hazard Mater. 294 (2015) 27-34. https://doi.org/10.1016/j.jhazmat.2015.03.056
  41. G.J. Irvine, S. Rajesh, M. Georgiadis, W.A. Phillip, Ion selective permeation through cellulose acetate membranes in forward osmosis, Environ. Sci. Technol. 47 (2013) 13745-13753. https://doi.org/10.1021/es403581t

Cited by

  1. Recent Progresses of Forward Osmosis Membranes Formulation and Design for Wastewater Treatment vol.11, pp.10, 2020, https://doi.org/10.3390/w11102043
  2. Electro-assisted adsorption of Cs(I) and Co(II) from aqueous solution by capacitive deionization with activated carbon cloth/graphene oxide composite electrode vol.749, 2020, https://doi.org/10.1016/j.scitotenv.2020.141524
  3. Forward osmosis for industrial effluents treatment – sustainability considerations vol.254, 2020, https://doi.org/10.1016/j.seppur.2020.117568
  4. A novel concept of Vertical Up-Flow Forward Osmosis reactor: Design, performance and evaluation vol.281, 2021, https://doi.org/10.1016/j.chemosphere.2021.130741
  5. Assessment of Forward Osmosis in PRO Mode during Desalination of a Local Oil Refinery Effluent vol.11, pp.11, 2021, https://doi.org/10.3390/membranes11110801
  6. Concentration polarization controlin stand-alone and hybrid forward osmosis systems: Recent technological advancements and future directions vol.178, 2020, https://doi.org/10.1016/j.cherd.2021.12.031