• Title/Summary/Keyword: Formulas

Search Result 2,336, Processing Time 0.033 seconds

Study on Principle of the Theory of Eight Constitutional Medicine (팔체질의학론의 원리에 대한 고찰)

  • Lee, Bong-Hee;Kwon, Kang-Beom;Park, Cheol;Jo, Chang-Rae;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.789-798
    • /
    • 2009
  • In Sasang constitutional medicine, I have researched the process of visceral structure in the Eight Constitutionals under circulation of the five elements and the formation of primary source of illness. From this research, I could draw following conclusions through combination of the auxiliary psycho-formulas by applying the constitutional acupuncture therapy on the five elements diagnostic calculation. Since the arrangement for the five dimensions of organs in the eight constitutions has been formulated by circulation of the five elements in Sasang constitutions, if the five elements begin circulating count-clockwise from the reference point at the organs in Sasang constitutional medicine, the positive constitutional arrangement of organs is built up such as, the positive constitution of metal, earth, wood and water, while begin circulating clockwise, the negative constitutional arrangement of organs is formulated, such as the negative constitutions of metal, earth, wood and water. The source of illness results from imbalance of the organic force being generated by transfer of the five elements from compatibility to incompatibility when the five elements circulate. Hence, it has been acknowledged that if the source of illness comes from the strongest organ, it is the time when circulation of the five elements progresses from the second organ (the second strongest) in incompatibility, and if the source of illness comes from the weakest organ, it is the time when circulation of the five elements progresses from the third organ (the middle) in incompatibility. It is considered proper to diagnose meridians of the pericardium and the Triple Burners rather than to diagnose meridians of the heart and the small intestine which forms the visceral arrangement of the eight constitutions. For instance, the auxiliary psycho-formula obtains its prescription by attenuating the first organ (the strongest) while augmenting the fourth organ (the second weakest) when the axis of incompatibility in the five elements circulation crosses the second and the third organs, and it gets its prescription by attenuating the second organ(the second strongest) while augmenting the fifth organ(the weakest) when the axis of incompatibility in the five elements circulation crosses the third and the fourth organs. In addition, when medicating, the $4{\sim}5$ times of repeated performance can be assumed to represent the amount of an energy that each organ bears depending on the phase in the arrangement of the eight constitutional organs.

Nonstoichiometry and Characteristics of the Perovskite $Y_{1-x}A_xFeO_{3-y}$ (A = Ca, Sr) Systems (페롭스카이트 $Y_{1-x}A_xFeO_{3-y}$ (A = Ca, Sr)계의 비화학양론과 특성 연구)

  • Yo, Chul-Hyun;Lee, Seung-Hyun;Lee, Sung-Joo;Park, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 1991
  • Nonstoichiometric solid solutions of $Y_{1-x}A_xFeO_{3-y}$ (A = Ca, Sr) systems with perovskite structure were prepared for x = 0.00, 0.25, 0.50, 0.75 and 1.00 at 1200$^{\circ}C$ under atmospheric pressure, respectively. Crystallographic structures of the solid solutions of all compositions have been determined by the analysis of X-ray diffraction patterns. Reduced lattice volume of the $Y_{1-x}Ca_xFeO_{3-y}$ system was decreased with increasing x value and that of the $Y_{1-x}Sr_xFeO_{3-y}$ system was increased with increasing the x value. The mole ratios of $ Fe^{4+}$ to $ Fe^{3+}$, ${\tau}$, values in the solid solutions have been determined by Mohr salt's method of analysis and then the mixed valency was identified by Mossbauer spectroscopic analysis at 298 K. The y values were calculated from the x and ${\tau}$, and then nonstoichiometric chemical formulas were fixed. The conduction mechanism could be explained by hopping model of the conduction electrons between the mixed valence states.

  • PDF

A Study on Nonstoichiometry and Physical Properties of the Mixed Valency Sr$_{1+x}Er _{1-x} FeO _{4-y}$ Ferrite System (혼합원자가 Sr$_{1+x}Er _{1-x} FeO _{4-y}$ 훼라이트계의 비화학양론과 물성연구)

  • Chul Hyun Yo;Kwang Sun Ryu;Mu Sil Pyun;Sung Joo Lee;Joong Gill Choi
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.99-104
    • /
    • 1991
  • Nonstoichiometric solid solutions of Sr$_{1+x}Er _{1-x} FeO _{4-y}$ system (x = 0.00, 0.25, 0.50, 0.75 and 1.00) with layered $K_2NiF_4$ type structure were prepared at 1350$^{\circ}$C under atmospheric pressure. By the analysis of X-ray diffraction, the crystallographic structures of the solid solution of all compositions were found to be pseudo-tetragonal system. Nonstoichiometric chemical formulas have been determined by Mohr salt analysis. It shows that the amount of Fe$^{4+}$ increases with increasing x up to 0.50 and then decreases, and the value of oxygen nonstoichiometry increases with increasing x value. Mixed valency states of Fe$^{3+}$ and Fe$^{4+}$ in the sample were identified again by Mossbauer spectroscopic analysis at 298 K. Electrical conductivity varied within the semiconductivity range of 10-2 ∼ 10-7(${\Omega}$-1cm-1), activation energy for electrical conduction decreased with the increment of the mole ratio of Fe$^{4+}$ or ${\tau}$ value. The conduction mechanism could be explained by the hopping model of the conduction electrons between the valency states of Fe$^{3+}$ and Fe$^{4+}$.

  • PDF

Design of FIR Halfband Filters using Generalized Lagrange Polynomial (일반화된 라그랑지 다항식을 사용하는 FIR 하프밴드 필터 설계)

  • Bong, Jeongsik;Jeon, Joonhyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.188-198
    • /
    • 2013
  • Maximally flat (MAXFLAT) half-band filters usually have wider transition band than other filters. This is due to the fact that the maximum possible number of zeros at $z={\pm}1$ is imposed, which leaves no degree of freedom, and thus no independent parameters for direct control of the frequency response. This paper describes a novel method for the design of FIR halfband filters with an explicit control of the transition-band width. The proposed method is based on a generalized Lagrange halfband polynomial (g-LHBP) with coefficients parametizing a 0-th coefficient $h_0$, and allows the frequency response of this filter type to be controllable by adjusting $h_0$. Then, $h_0$ is modeled as a steepness parameter of the transition band and this is accomplished through theoretically analyzing a polynomial recurrence relation of the g-LHBP. This method also provides explicit formulas for direct computation of design parameters related to choosing a desired filter characteristic (by trade-off between the transition-band sharpness and passband & stopband flatness). The examples are shown to provide a complete and accurate solution for the design of such filters with relatively sharper transition-band steepness than MAXFLAT half-band filters.

Low-power Lattice Wave Digital Filter Design Using CPL (CPL을 이용한 저전력 격자 웨이브 디지털 필터의 설계)

  • 김대연;이영중;정진균;정항근
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.39-50
    • /
    • 1998
  • Wide-band sharp-transition filters are widely used in applications such as wireless CODEC design or medical systems. Since these filters suffer from large sensitivity and roundoff noise, large word-length is required for the VLSI implementation, which increases the hardware size and the power consumption of the chip. In this paper, a low-power implementation technique for digital filters with wide-band sharp-transition characteristics is proposed using CPL (Complementary Pass-Transistor Logic), LWDF (Lattice Wave Digital Filter) and a modified DIFIR (Decomposed & Interpolated FIR) algorithm. To reduce the short-circuit current component in CPL circuits due to threshold voltage reduction through the pass transistor, three different approaches can be used: cross-coupled PMOS latch, PMOS body biasing and weak PMOS latch. Of the three, the cross-coupled PMOS latch approach is the most realistic solution when the noise margin as well as the energy-delay product is considered. To optimize CPL transistor size with insight, the empirical formulas for the delay and energy consumption in the basic structure of CPL circuits were derived from the simulation results. In addition, the filter coefficients are encoded using CSD (Canonic Signed Digit) format and optimized by a coefficient quantization program. The hardware cost is minimized further by a modified DIFIR algorithm. Simulation result shows that the proposed method can achieve about 38% reductions in power consumption compared with the conventional method.

  • PDF

Physical Property Factors Controlling the Electrical Resistivity of Subsurface (지반의 전기비저항을 좌우하는 물성요인)

  • Park Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.130-135
    • /
    • 2004
  • This paper describes the physical properties of the factors controlling the electrical resistivity of the subsurface. Resistivities of various types of soil and rock samples saturated with sodium chloride solutions having nine different concentrations were measured, and the measured resistivities of these samples were compared with calculated resistivities obtained using the conventional empirical formulas. From the results obtained, we observed that the resistivity of the soil and rock samples increases with increasing in pore-fluids resistivity regardless of the media type. However, between 20 and 200 ohm-m, which is the normal range of resistivity of groundwater, the resistivity of the pore-fluids have little or no effect on the resistivities of the samples used. Below 10 ohm-m, the resistivities of the samples are mainly controlled by the pore-fluids, whereas, in the normal range of resistivity of groundwater, the sample resistivities are controlled by their intrinsic matrix resistivity more than by the pore-fluids resistivity. Also, the measured resistivity of rock and soil samples having more than $20\%$ clay contents showed a good agreement with the calculated resistivity using the parallel resistance model whereas, the calculated resistivities of glass beads correlate with that obtained using Archie's formula. When the pore-fluid resistivity is high, the computation of the resistivity values of the samples using the Archie's formula could not be carried out. Through this study, we were able to confirm that the tests are only applicable to the parallel resistance model considering the intrinsic matrix resistivity within the normal resistivity range of groundwater in the subsurface.

Calculation of the Yield of Bank Filtration by Using the Horizontal Collector Wells (방사형 집수정에 의한 강변여과수 산출량 산정에 관한 연구)

  • Chung Ji-hoon;Park Jae-hyeon;Park Chang-kun;Yang Jung-suk;Kim Dae-kun;Jeong Kyo-cheol;Choi Youg-sun;Bu Sung-an
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.417-427
    • /
    • 2004
  • The horizontal collector well is used to treat some weak points of the vertical well in the bank filtration site. In this study two empirical formulas(Milojevic and Petrovic) are selected to examine the applicability for calculating the yield of the horizontal collector. And they are compared with the compute simulation results for multiple wells. Milojevic empirical formula which considers the conditions such as aquifer, well location, the diameter of screen etc. is more applicable than Petrovic formula. Draw-down characteristics of horizontal collector was well simulated by using the computer simulation for multiple wells. The results are well agreement with Milojevic formula, and the draw-down and the retention time of the horizontal collector can be controlled by adjusting the angle of lateral screens.

A Comparison of Mathematically Gifted Students' Solution Strategies of Generalizing Geometric Patterns (초등학교 4,5,6학년 영재학급 학생의 패턴 일반화를 위한 해결 전략 비교)

  • Choi, Byoung Hoon;Pang, Jeong Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.4
    • /
    • pp.619-636
    • /
    • 2012
  • The main purpose of this study was to explore the process of generalization generated by mathematically gifted students. Specifically, this study probed how fourth, fifth, and sixth graders might generalize geometric patterns and represent such generalization. The subjects of this study were a total of 30 students from gifted classes of one elementary school in Korea. The results of this study showed that on the question of the launch stage, students used a lot of recursive strategies that built mainly on a few specific numbers in the given pattern in order to decide the number of successive differences. On the question of the towards a working generalization stage, however, upper graders tend to use a contextual strategy of looking for a pattern or making an equation based on the given information. The more difficult task, more students used recursive strategies or concrete strategies such as drawing or skip-counting. On the question of the towards an explicit generalization stage, students tended to describe patterns linguistically. However, upper graders used more frequently algebraic representations (symbols or formulas) than lower graders did. This tendency was consistent with regard to the question of the towards a justification stage. This result implies that mathematically gifted students use similar strategies in the process of generalizing a geometric pattern but upper graders prefer to use algebraic representations to demonstrate their thinking process more concisely. As this study examines the strategies students use to generalize a geometric pattern, it can provoke discussion on what kinds of prompts may be useful to promote a generalization ability of gifted students and what sorts of teaching strategies are possible to move from linguistic representations to algebraic representations.

  • PDF

Some Statistical Considerations on 2×k Crossover Designs for Bioequivalence Trial (생물학적 동등성 시험을 위한 2×k 교차설계법의 통계적 고려)

  • Noh, So-Young;Park, Sang-Gue
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.675-686
    • /
    • 2013
  • The Korea Food and Drug Administration(KFDA) recommends the use of a $2{\times}2$ crossover design to assess the bioequivalence of generic drugs. However, a standard $2{\times}2$ crossover design for bioequivalence trials is often considered problematic due to ethical and economic issues as highly variable drugs are usually required by large numbers of subjects when designing the trial. To overcome this problem a $2{\times}4$ crossover design has been a recommended option as per US regulations; in addition, a $2{\times}3$ crossover design has also recently drawn special attention as an efficient alternative. The current KFDA regulation requires an ANOVA table for every bioequivalence study; however, ANOVA tables of $2{\times}4$ and $2{\times}3$ crossover designs have never been published in the literature. This study shows the derivation of tables of analysis of variance for a $2{\times}4$ cross-over design and a $2{\times}3$ cross-over design. We also suggest a sample size formulas for $2{\times}2$, $2{\times}4$ and $2{\times}3$ crossover designs to provide information on the selection of efficient designs for highly variable drugs.

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.