• Title/Summary/Keyword: Formation free energy

Search Result 233, Processing Time 0.031 seconds

Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

  • Vetrivel, Umashankar;Muralikumar, Shalini;Mahalakshmi, B;K, Lily Therese;HN, Madhavan;Alameen, Mohamed;Thirumudi, Indhuja
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

Effect of the Concentration of Complexing Agent on the Formation of ZnS Buffer Layer by CBD Method (CBD 방법에 의한 ZnS 버퍼층 형성의 착화제 농도에 따른 영향)

  • Kwon, Sang Jik;Yoo, In Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.625-630
    • /
    • 2017
  • ZnS was chemically deposited as a buffer layer alternative to CdS, for use as a Cd-free buffer layer in $Cu(In_{1-x}Ga_x)Se_2$ (CIGS) solar cells. The deposition of a thin film of ZnS was carried out by chemical bath deposition, following which the structural and optical properties of the ZnS layer were studied. For the experiments, zinc sulfate hepta-hydrate ($ZnSO_4{\cdot}7H_2O$), thiourea ($SC(NH_2)_2$), and ammonia ($NH_4OH$) were used as the reacting agents. The mole concentrations of $ZnSO_4$ and $SC(NH_2)_2$ were fixed at 0.03 M and 0.8 M, respectively, while that of ammonia, which acts as a complexing agent, was varied from 0.3 M to 3.5 M. By varying the mole concentration of ammonia, optimal values for parameters like optical transmission, deposition rate, and surface morphology were determined. For the fixed mole concentrations of $0.03M\;ZnSO_4{\cdot}7H_2O$ and $0.8M\;SC(NH_2)_2$, it was established that 3.0 M of ammonia could provide optimal values of the deposition rate (5.5 nm/min), average optical transmittance (81%), and energy band gap (3.81 eV), rendering the chemically deposited ZnS suitable for use as a Cd-free buffer layer in CIGS solar cells.

Pretreatment of Feedstock by Ion Exchange Resin Catalyst in Biodiesel process (바이오디젤 공정에서 이온교환수지 촉매에 의한 원료유의 전처리)

  • Lee Soo-Gon;Chae Hee-Jeong;Yoo Jeong-Woo;Kim Eui-Yong
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.68-71
    • /
    • 2006
  • Free fatty acids are not esterified by alkaline catalyst transesterification. They are detrimental to the quality specifications in biodiesel. Therefore, we tried to find solid catalyst to remove free fatty acids in feedstock. Amberlyst 15 resin was selected as the best catalyst, and the moisture content containing in the resin was found to be important for the reaction. The removal efficiency of free fatty acids was gradually decreased from 97% to 70% by ten times reuse of resin. In the transesterificaion reaction by KOH catalyst, soap formation could be decreased by 58.3% using the feedstock pretreated by resin. Consequently, the purity of biodiesel was enhanced about 10%, as compared with the non-treated feedstock.

The Pressure Drop and Heat Transfer Characteristics of a Direct Contact 4-Stage Fluidized Bed Heat Exchanger (직접 접촉식 4단 유동층 열교환기의 압력손실 및 열전달 특성)

  • 임동렬;박상일;전광민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.325-335
    • /
    • 1992
  • In this work, direct contact 4-stage fluidized bed heat exchanger is experimentally studied to develop a new type of heat exchanger which recovers the energy contained in the high temperature waste gas exhausted from the industrial furnaces. A sand is used as a heat transfer medium in this experiment. To determine the optimum operating condition, 11 different perforated plates which have a different free area ratio with different hole diameter are used in the experiment. From the room temperature experiment, the pressure drop which is caused by fluidized bed formation is observed. The high temperature experiment is carried out to seek the optimum operating condition of high heat efficiency at low heat exchanger operation cost. The results of experiment are as following. The pressure drop in the high temperature condition can be predicted from the results of the room temperature experiment. And Nusselt number becomes smaller due to the increased interference between sand particles as Reynolds number increases when the dilute phase fluidized beds are formed in nigh temperature condition. But heat transfer amount through the total sand surface area become larger due to the large resident amount of sand. Considering the heat transfer amount and the heat exchanger operation cost, perforated plates which have either a 30% or 35% of free area ratio with 15mm of hole diameter are best fitted for our goal of this work. The values of .phi. which is a dimensionless number representing the absorption heat amount per unit sand rate are in the range from 0.4 to 0.5, when Reynolds number of waste gas ranges from 25-30 with these perforated plates.

Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode (탄소가 코팅된 일산화규소(SiO) 음극에서 전해질 첨가제로서 Lithium Bis(oxalato)borate의 영향)

  • Kim, Kun Woo;Lee, Jae Gil;Park, Hosang;Kim, Jongjung;Ryu, Ji Heon;Kim, Young-Ugk;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • As an electrolyte additive, the effects of lithium bis(oxalate)borate (LiBOB) on the electrochemical properties of a carbon-coated silicon monoxide (C-coated SiO) negative electrode are investigated. The used electrolyte is 1.3M $LiPF_6$ that is dissolved in ethylene carbonate (EC), fluoroethylene carbonate (FEC), and diethyl carbonate (DEC) (5:25:70 v/v/v) with or without 0.5 wt. % LiBOB. In the LiBOB-free electrolyte, the film resistance is not so high in the initial period of cycling that lithiation is facilitated to generate the crystalline $Li_{15}Si_4$ phase. Due to repeated volume change that is caused by such a deep charge/discharge, cracks form in the active material to cause a resistance increase, which eventually leads to capacity fading. When LiBOB is added into the electrolyte, however, more resistive surface film is generated by decomposition of LiBOB in the initial period. The crystalline $Li_{15}Si_4$ phase does not form, such that the volume change and crack formation are greatly mitigated. Consequently, the C-coated SiO electrode exhibits a better cycle performance in the later cycles. At an elevated temperature ($45^{\circ}C$), wherein the effect of film resistance is less critical, the alloy ($Li_{15}Si_4$ phase) formation is comparable for the LiBOB-free and added cell to give a similar cycle performance.

Preparation of CoFe2O4 Nanoparticle Decorated on Electrospun Carbon Nanofiber Composite Electrodes for Supercapacitors (코발트 페라이트 나노입자/탄소 나노섬유 복합전극 제조 및 슈퍼커패시터 특성평가)

  • Hwang, Hyewon;Yuk, Seoyeon;Jung, Minsik;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2021
  • Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.

Fabrication of nonequilibrium alloy powders in immiscible Cu-Nb system by mechanical alloying (기계적 합금화에 의한 비고용 Cu-Nb계 비평형 합금의 제조)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.210-215
    • /
    • 2006
  • Mechanical alloying (MA) by high energy ball mill of pure copper and niobium powders was carried out under the Ar gas atmosphere. The supersaturated solid solution can be produced in the range up to $Cu_xNb_{100-x}$(x=5-30) by MA for 120 hrs, as demonstrated by X-ray diffraction, DSC analysis and the electronic studies through a change in the superconducting transition in the low-temperature specific heat. The $Cu_{30}Nb_{70}$ samples ball-milled for 120 hrs exhibit only a broad exothermic heat release. The total energy, ${\Delta}H_t$ accumulated during MA far the mixture of $Cu_{30}Nb_{70}$ powders increased with milling time and approached the saturation value of 7.5 kJ/mol after 120 h of milling. It can be seen that the free energy difference between the supersaturated solid solution and the mixture of $Cu_{30}Nb_{70}$ powders is estimated to be 7 kJ/mol by Miedema et al. Hence it is thermodynamically possible to assume the formation of a supersaturated solid solution phase in this system.

Flow Structure of Conical Vortices Generated on the Roof of a Rectangular Prism (직사각형 프리즘 상면에서 발생되는 원추형 와의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • Characteristics of the conical vortices on the roof corner of a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and the height of the model was 5.3$\times$10$^3$. The mean, instantaneous velocity vector fields, vorticity fields, and turbulent kinetic energy distribution were measured for two different angles of attack, 30$^{\circ}$and 45$^{\circ}$. The PIV measurements clearly observed not only the conical main vortex and the secondary vortex but also the tertiary vortex which is firstly reported in this paper. Asymmetric formation of the corner vortex for the case of 30$^{\circ}$angle of attack produces relatively the high magnitude of vorticity and turbulent kinetic energy around the bigger vortex which generates the peak suction pressure on the roof. Fairly symmetric features of the roof vortex are observed in the case of 45$^{\circ}$angle of attack, however, the dynamic characteristics are proved to be asymmetric due to the rectangular shape of the roof.

Properties of TiO2 Thin Films Deposited on PET Substrate for High Energy Density Capacitor (고에너지밀도 캐패시터를 위해 PET 기판에 증착한 TiO2 박막의 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.409-415
    • /
    • 2012
  • $TiO_2$ thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature. Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. The effects of deposition pressure on the crystallization and electrical properties of $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphous structure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing deposition pressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of $TiO_2$ films was significantly changed with deposition pressure. $TiO_2$ films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant and dissipation factor of films deposited at 70 mTorr were found to be 100~120 and 0.83 at 1 kHz, respectively. The temperature dependence of the capacitance of $TiO_2$ films showed the properties of class I ceramic capacitors. $TiO_2$ films deposited at 10~30 mTorr showed dielectric breakdown at applied voltage of 7 V. However, the films of 500~300 nm thickness deposited at 50 and 70 mTorr showed a leakage current of ${\sim}10^{-8}{\sim}10^{-9}$ A at 100 V.