DOI QR코드

DOI QR Code

CBD 방법에 의한 ZnS 버퍼층 형성의 착화제 농도에 따른 영향

Effect of the Concentration of Complexing Agent on the Formation of ZnS Buffer Layer by CBD Method

  • Kwon, Sang Jik (Department of Electronics Engineering, Gachon University) ;
  • Yoo, In Sang (Department of Chemical and Biological Engineering, Gachon University)
  • 투고 : 2017.07.20
  • 심사 : 2017.09.01
  • 발행 : 2017.10.01

초록

ZnS was chemically deposited as a buffer layer alternative to CdS, for use as a Cd-free buffer layer in $Cu(In_{1-x}Ga_x)Se_2$ (CIGS) solar cells. The deposition of a thin film of ZnS was carried out by chemical bath deposition, following which the structural and optical properties of the ZnS layer were studied. For the experiments, zinc sulfate hepta-hydrate ($ZnSO_4{\cdot}7H_2O$), thiourea ($SC(NH_2)_2$), and ammonia ($NH_4OH$) were used as the reacting agents. The mole concentrations of $ZnSO_4$ and $SC(NH_2)_2$ were fixed at 0.03 M and 0.8 M, respectively, while that of ammonia, which acts as a complexing agent, was varied from 0.3 M to 3.5 M. By varying the mole concentration of ammonia, optimal values for parameters like optical transmission, deposition rate, and surface morphology were determined. For the fixed mole concentrations of $0.03M\;ZnSO_4{\cdot}7H_2O$ and $0.8M\;SC(NH_2)_2$, it was established that 3.0 M of ammonia could provide optimal values of the deposition rate (5.5 nm/min), average optical transmittance (81%), and energy band gap (3.81 eV), rendering the chemically deposited ZnS suitable for use as a Cd-free buffer layer in CIGS solar cells.

키워드

참고문헌

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovoltaics, 19, 894 (2011). [DOI: https://doi.org/10.1002/pip.1078]
  2. K. Kushiya, M. Ohshita, I. Hara, Y. Tanaka, B. Sang, Y. Nagoya, M. Tachiyuki, and O. Yamase, Sol. Energy Mater. Sol. Cells, 75, 171 (2003). [DOI: https://doi.org/10.1016/S0927-0248(02)00144-7]
  3. D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, J. Appl. Phys., 73, 2902 (1993). [DOI: https://doi.org/10.1063/1.353020]
  4. F. Jacob, N. Barreau, S. Gall, and J. Kessler, Thin Solid Films, 515, 6028 (2007). [DOI: https://doi.org/10.1016/j.tsf.2006.12.052]
  5. J. M. Dona and J. Herrero, J. Electrochem. Soc., 144, 4081 (1997). [DOI: https://doi.org/10.1149/1.1838140]
  6. R. Ortega-Borges and D. Lincot, J. Electrochem. Soc., 140, 3464 (1993). [DOI: https://doi.org/10.1149/1.2221111]
  7. O. L. Arenas, M.T.S. Nair, and P. K. Nair, Semicond. Sci. Technol., 12, 1323 (1997). [DOI: https://doi.org/10.1088/0268-1242/12/10/022]
  8. T. Negami, T. Aoyagi, T. Satoh, S. Shimakawa, S. Hayashi, and Y. Haskimoto, Proc. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002 (IEEE, New Orleans, 2002). p. 656. [DOI: http://doi.org/10.1109/PVSC.2002.1190650]
  9. T. Nakada, M. Hongo, and E. Hayashi, Thin Solid Films, 431, 242 (2003). [DOI: https://doi.org/10.1016/S0040-6090(03)00265-7]
  10. Q. Liu, M. Guobing, and A. Jianping, Appl. Surf. Sci., 254, 5711 (2008). [DOI: https://doi.org/10.1016/j.apsusc.2008.03.059]
  11. S. Siebentritt, Sol. Energy, 77, 767 (2004). [DOI: https://doi.org/10.1016/j.solener.2004.06.018]
  12. J. M. Dona and J. Herrero, Thin Solid Films, 268, 5 (1995). [DOI: https://doi.org/10.1016/0040-6090(95)06738-8]
  13. F. Gode, C. Gümüş, and M. Zor, J. Cryst. Growth, 299, 136 (2007). [DOI: https://doi.org/10.1016/j.jcrysgro.2006.10.266]
  14. C. Gumus, C. Ulutas, R. Esen, O. M. Ozkendir, and Y. Ufuktepe, Thin Solid Films, 492, 1 (2005). [DOI: https://doi.org/10.1016/j.tsf.2005.06.016]
  15. J.D.J. Ingle and S. R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988) p. 69.
  16. A. Antony, K. V. Murali, R. Manoj, and M. K. Jayaraj, Mater. Chem. Phys., 90, 106 (2005). [DOI: https://doi.org/10.1016/j.matchemphys.2004.10.017]