Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.8.409

Properties of TiO2 Thin Films Deposited on PET Substrate for High Energy Density Capacitor  

Park, Sang-Shik (School of Nano-Materials Engineering, Kyungpook National University)
Publication Information
Korean Journal of Materials Research / v.22, no.8, 2012 , pp. 409-415 More about this Journal
Abstract
$TiO_2$ thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature. Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. The effects of deposition pressure on the crystallization and electrical properties of $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphous structure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing deposition pressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of $TiO_2$ films was significantly changed with deposition pressure. $TiO_2$ films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant and dissipation factor of films deposited at 70 mTorr were found to be 100~120 and 0.83 at 1 kHz, respectively. The temperature dependence of the capacitance of $TiO_2$ films showed the properties of class I ceramic capacitors. $TiO_2$ films deposited at 10~30 mTorr showed dielectric breakdown at applied voltage of 7 V. However, the films of 500~300 nm thickness deposited at 50 and 70 mTorr showed a leakage current of ${\sim}10^{-8}{\sim}10^{-9}$ A at 100 V.
Keywords
$TiO_2$; high energy density; capacitor; r.f. sputtering; dielectrics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. N. Pandiyaraj, V. Selvarajan, M. Pavese, P. Falaras and D. Tsoukleris, Curr. Appl. Phys., 9, 1032 (2009).   DOI   ScienceOn
2 K. O. Awitor, A. Rivaton, J. L. Gardette, A. J. Down and M. B. Johnson, Thin Solid Films, 516, 2286 (2008).   DOI   ScienceOn
3 L. T. Lamont and A. Lang, J. Vac. Sci. Tech., 7, 198 (1970).   DOI
4 Y. Zhao, Y. Qian, W. Yu and Z. Chen, Thin Solid Films, 286, 45 (1996).   DOI   ScienceOn
5 J. Guillot, F. Fabreguette, L. Imhoff, O. Heintz, M. C. Marco de Lucas, M. Sacilotti, B. Domenichini and S. Bourgeois, Appl. Surf. Sci., 177, 268 (2001).   DOI   ScienceOn
6 J. Jun, J. H. Shin and M. Dhayal, Appl. Surf. Sci., 252, 3871 (2006).   DOI   ScienceOn
7 P. M. Kumar, S. Badrinarayanan and M. Sastry, Thin Solid Films, 358, 122 (2000).   DOI   ScienceOn
8 V. M. Ferreira, J. L. Baptista, S. Kamba and J. Petzelt, J. Mater. Sci., 28, 5894 (1993).   DOI
9 M. Takeuchi, T. Itoh and H. Nagasaka, Thin Solid Films, 51, 83 (1978).   DOI   ScienceOn
10 M. D. Stamate, Appl. Surf. Sci., 218, 318 (2003).   DOI   ScienceOn
11 R. C. Pullar, S. J. Penn, X. Wang, I. M. Reaney and N. McN. Alford, J. Eur. Ceram. Soc., 29, 419 (2009).   DOI   ScienceOn
12 A. Nishino, J. Power Sourc., 60, 137 (1996).   DOI   ScienceOn
13 M. Jayalakshmi and K. Balasubramanian, Int. J. Electrochem. Sci., 3, 1196 (2008).
14 R. Vazquez-Reina, S. Chao, V. Petrovsky, F. Dogan and S. Greenbaum, J. Power Sourc., 210, 21 (2012).   DOI   ScienceOn
15 K. R. Bray, R. L. C. Wu, S. Fries-Carr and J. Weimer, Thin Solid Films, 518, 366 (2009).   DOI   ScienceOn
16 S. Chao and F. Dogan, Int. J. Appl. Ceram. Tech., 8(6), 1363 (2011).   DOI   ScienceOn
17 C. R. Martins, Y. M. de Almeida, G. C. do Nascimento and W. M. de Azevedo, J. Mater. Sci., 41, 7413 (2006).   DOI   ScienceOn