Fabrication of nonequilibrium alloy powders in immiscible Cu-Nb system by mechanical alloying

기계적 합금화에 의한 비고용 Cu-Nb계 비평형 합금의 제조

  • Lee, Chung-Hyo (Dept. of Advanced Materials Science and Engineering, Mokpo National University)
  • 이충효 (목포대학교 신소재공학과)
  • Published : 2006.10.31

Abstract

Mechanical alloying (MA) by high energy ball mill of pure copper and niobium powders was carried out under the Ar gas atmosphere. The supersaturated solid solution can be produced in the range up to $Cu_xNb_{100-x}$(x=5-30) by MA for 120 hrs, as demonstrated by X-ray diffraction, DSC analysis and the electronic studies through a change in the superconducting transition in the low-temperature specific heat. The $Cu_{30}Nb_{70}$ samples ball-milled for 120 hrs exhibit only a broad exothermic heat release. The total energy, ${\Delta}H_t$ accumulated during MA far the mixture of $Cu_{30}Nb_{70}$ powders increased with milling time and approached the saturation value of 7.5 kJ/mol after 120 h of milling. It can be seen that the free energy difference between the supersaturated solid solution and the mixture of $Cu_{30}Nb_{70}$ powders is estimated to be 7 kJ/mol by Miedema et al. Hence it is thermodynamically possible to assume the formation of a supersaturated solid solution phase in this system.

본 연구에서는 순 Cu 및 Nb 혼합분말에 대하여 Ar 분위기 중 고에너지 볼밀처리를 실시하여 기계적 합금화(MA) 효과를 조사하였다. $Cu_xNb_{100-x}$(x=5-50) 조성의 혼합분말을 각각 120시간까지 MA 처리 한 결과, Cu의 bcc-Nb 과포화 고용체가 30 at% Cu까지 넓어짐을 X선 회절분석, DSC 열분석 및 저온비열 측정을 통한 초전도 천이온도 변화로부터 알수 있었다. 120시간 MA 처리한 $Cu_{30}Nb_{70}$ 조성합금의 열분석 결과 broad한 발열반응만이 관찰되었으며, 볼밀처리에 의하여 계에 축적되는 에너지는 볼밀시간에 따라 증가하여 7.5kJ/mol 에 포화됨을 알 수 있었다. Miedema et al.의 계산에 의하면 $Cu_{30}Nb_{70}$ 혼합분말과 과포화 고용체의 자유에너지 차가 7kJ/mol이며, 본 연구에서 MA에 의하여 계에 축적된 에너지 값과 거의 같은 사실로부터 이 계에서 열역학적으로 과포화 고용체가 충분히 얻어질 수 있음을 나타내는 것으로 판단된다.

Keywords

References

  1. C.C. Koch, O.B. Cavin, C.G Mckamey and J.O. Scarbrough, 'Preparation of amorphous $Ni_{60}Nb_{40}$ by mechanical alloying', Appl. Phys. Lett. 43 (1983) 1017 https://doi.org/10.1063/1.94213
  2. U. Mizutani and C.H. Lee, 'Effect of mechanical alloying beyond the completion of glass formation for Ni-Zr alloy powders', J. Mat. Sci. 25 (1990) 399 https://doi.org/10.1007/BF00714046
  3. H.J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, 'Nanocrystalline metals prepared by high-energy ball milling', Metal. Trans. 21 (1990) 2333 https://doi.org/10.1007/BF02646980
  4. J. Eckert and L.Schultz, 'Glass formation and extended solubilities in mechanically alloyed cobalt-transition metal alloys', J. Less-Common Metals 166 (1990) 293 https://doi.org/10.1016/0022-5088(90)90011-8
  5. K. Suzuki, Y. Homma, K. Suzuki and M. Misawa, 'Structural characterization of Ni-V amorphous alloys prepared by mechanical alloying', Mat. Sci. Eng. A134 (1991) 987
  6. R.B. Schwarz and WL. Johnson, 'Formation of an amorphous alloy by solid state reaction of the pure polycrystalline metals', Phys. Rev. Letters 51 (1983) 415 https://doi.org/10.1103/PhysRevLett.51.415
  7. Y. Ogino, S. Murayama and T. Yamasaki, 'Influence of milling atmosphere on amorphization of chromium and Cr-Cu powders by ball milling', J. Less-Common Metals 168 (1991) 221 https://doi.org/10.1016/0022-5088(91)90304-M
  8. C.H. Lee, M. Mori, T. Fukunaga and U. Mizutani, 'Structural evidence for the amorphization of mechanically alloyed Cu-Ta powders studied by neutron diffraction and EXAFS', Mat. Sci. Forum 88-90 (1992) 399
  9. T. Fukunaga, N. Kuroda, C.H. Lee, T. Koyano and U. Mizutani, 'Nitrogen induced amorphization observed by X-ray and neutron diffractions in the immiscible V-Cu system', J. Non-Cryst. Solids 176 (1994) 98 https://doi.org/10.1016/0022-3093(94)90217-8
  10. U. Mizutani and C.H. Lee, 'Mechanical alloying in CuV and Cu-Ta systems characterized by a positive heat of mixing', Mater. Trans. JIM 36 (1995) 210 https://doi.org/10.2320/matertrans1989.36.210
  11. R. Schwarz and C.C. Koch, 'Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics', Appl. Phys. Lett. 49 (1986) 146 https://doi.org/10.1063/1.97206
  12. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed. (ASM, 1990) p.150
  13. F.R. de Boer, R. Boom, W.C.M. Matten, A.R. Miedema and A.K. Niessen, Cohesion in Metals (North-Holland, Amsterdam, 1988) p. 248
  14. C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons Inc. 1986) p. 136
  15. C.H. Lee, M. Mori and U. Mizutani, 'Differential scanning calorimetry study of various intermetallic compounds subjected to mechanical grinding', J. Non-Cryst. Solids 117-118 (1990) 733 https://doi.org/10.1016/0022-3093(90)90633-W