• Title/Summary/Keyword: Force measuring

Search Result 948, Processing Time 0.031 seconds

Behavior of Floating Top-Base Foundation on Soft Soils by Laboratory Model Tests (실내모형실험을 통한 연약지반에서 부양형 팽이기초의 거동)

  • Chung, Jin-Hyuck;Chung, Hye-Kwun;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.5-15
    • /
    • 2011
  • This research performed the laboratory model tests for Top-Base Foundation developed in Japan and Floating Top-Base Foundation developed in Korea on the typical clayey soft soils, namely, clay, clayey silt and clayey sand. The performances of the two types of top-base foundation were compared with each other and evaluated by measuring load-settlement, heaving of foundation side, ground stress distribution in this model tests. The change of settlement caused by the increase of top base width was also analyzed. As a result of the model tests, Floating Top-Base Foundation showed better performance in bearing capacity improvement, settlement decrease, stress dispersion effect and lateral confinement force. And settlement caused by the increase of top base width converged to a regular value from $5{\times}5$ layout of the width.

STUDY ON VERTICAL DISPLACEMENT OF SOFT TISSUE UNDER DISTAL EXTENSION PARTIAL DENTURE BASE BY FUNCTIONAL IMPRESSION (유리단 국소의치의 기능 인상에 의한 연조직의 수직적 변위량에 관한 연구)

  • Lee, Kwang-Hee;Chang, IK-Tai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 1983
  • Distal extension partial dentures are supported by both the relatively rigid teeth and the resilient mucosa. So impression techniques of residual alveolar ridge in case of distal extension partial denture have particular importance in order to broad distribution of the masticatory force. McLean recognized the need for recording the tissues supporting distal extension partial denture base in functional form to equalize the resilient and non-resilient support, and this was called functional impression. Many investigators proposed various techniques of the functional impression for a distal extension partial denture, but only a little studies were performed about displacement of soft tissue under distal extension partial denture base. The purpose of this study is to investigate the amount of vertical displacement of the soft tissue under distal extension partial denture base by different functional impression techniques. Impression techniques used were Z.O.P. Impression, Selective Tissue Placement Impression, Functional Relining Impression. Measurement of the vertical displacement of soft tissue were made with Depth Gauge and Measuring Platform. A Anatomic Impression was used as a control. The results were tested statistically using 3 way ANOVA and Scheffe test. The followings were the results obtained from this study. 1. The greatest amount of soft tissue displacement was observed in the center of the retromolar pad. 2. No significant differences were found between the crest of alveolar ridge and the buccal shelf area. 3. The greatest soft tissue displacement was observed in Functional Relining Impression using Iowa wax, and the least displacement was observed in Selective Tissue Placement Impression using murcaptan rubber base. 4. No significant differences were found between finger pressure and biting pressure in Z.O.P. Impression, but greater displacement was observed by biting pressure than finger pressure in Functional Reling Impression.

  • PDF

Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams

  • Hwang, Jin-Ha;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kang, Thomas H.K.;Pan, Zuanfeng
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.53-63
    • /
    • 2016
  • Steel fiber-reinforced prestressed concrete (SFRPSC) members typically have high shear strength and deformation capability, compared to conventional prestressed concrete (PSC) members, due to the resistance provided by steel fibers at the crack surface after the onset of diagonal cracking. In this study, shear tests were conducted on the SFRPSC members with the test variables of concrete compressive strength, fiber volume fraction, and prestressing force level. Their localized behavior around the critical shear cracks was measured by a non-contact image-based displacement measurement system, and thus their shear deformation was thoroughly investigated. The tested SFRPSC members showed higher shear strengths as the concrete compressive strength or the level of prestress increased, and their stiffnesses did not change significantly, even after diagonal cracking due to the resistance of steel fibers. As the level of prestress increased, the shear deformation was contributed by the crack opening displacement more than the slip displacement. In addition, the local displacements around the shear crack progressed toward directions that differ from those expected by the principal strain angles that can be typically obtained from the average strains of the concrete element. Thus, this localized deformation characteristics around the shear cracks should be considered when measuring the local deformation of concrete elements near discrete cracks or when calculating the local stresses.

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.

Study on the Optimal Release Condition of Wafer Level Molding Process using Plasma Surface Treatment Method (플라즈마 표면처리 방법을 이용한 웨이퍼레벨 몰딩 공정용 기판의 최적 이형조건 도출)

  • Yeon, Simo;Park, Jeonho;Lee, Nukkyu;Park, Sukhee;Lee, Hyejin
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2015
  • In wafer level molding progress, the thermal releasing failure phenomenon is shown up as the important problem. This phenomenon can cause the problem including the warpage, crack of the molded wafer. The thermal releasing failure is due to the insufficiency of adhesion strength degradation of the molding tape. To solve this problem, we studied experimental method increasing the release property of the molding tape through the plasma surface treatment on the wafer substrate. In this research, the vacuum plasma treatment system is used for release property improvement of the molding tape and controls the operating condition of the hydrophilic($O_2$, 100kW, 10min) and hydrophobic($C_2F_6$, 200kW, 10min). In order to perform the peeling test for measuring the releasing force precisely, we remodel the micro scale material property evaluation system developed by Korea institute of industrial technology. In case of hydrophilic surface treatment on the wafer substrate, we can figure out the releasing property of molding tape increase. In order to grasp the effect that it reaches to the release property increase when repeating the hydrophilic treatment, we make an experiment with twice treatment and get the result to increase about 12%. We find out the hydrophilic surface treatment method using plasma can improve releasing property of molding tape in the wafer level molding process.

Implementation of Web-based Performance Monitoring System for E-Mail Server (전자메일 서버의 웹 기반 성능 모니터링 시스템 구현)

  • Lee, Seung-Sup;Hwang, Min-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2105-2112
    • /
    • 2013
  • In this paper we implemented a web-based performance monitoring system for web mail server. For this system we derived performance monitoring items and fixed its threshold values for each measuring items. We used the SCOM 2007 server monitoring tool for collecting the performance data of web mail server and Exchange server management pack and server monitoring rules of SCOM 2007 to set the performance analysis parameters. We implemented this performance monitoring system using C# programming based on the ASP.NET framework. This system supports web-based performance report, failure report and resource availability report from the performance analysis results. Therefore the manager can easily detect the failures of web mail server in advance and decrease the number of failure over 60%. Also this system helps manager to minimize the recovery time when the failure occurs.

A Study on the ELID Grinding Properties of Single Crystal Sapphire Wafer using Ultrasonic Table (초음파 테이블을 이용한 단결정 사파이어 웨이퍼의 ELID 연삭가공 특성 연구)

  • Hwang, JinHa;Kwak, Tae-Soo;Lee, Deug-Woo;Jung, Myung-Won;Lee, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • Single crystal sapphire being used in high technology industry is a brittle material with a high hardness and excellent physical properties. ELID(Electrolytic In-Process Dressing) grinding technology was applied to material removal machining process of single crystal sapphire wafer. Ultrasonic vibration which added to material using ultrasonic table was adopted to efficient ELID grinding of sapphire materials. The evaluation of the ground surface of single crystal sapphire wafer was carried out by means of surface measuring by using AFM(Atomic Force Microscope), surface roughness tester and optical microscope device. As the results of experiment, it was shown that more efficient grinding was conducted when using ultrasonic table. In case of using #170 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was superior to ELID ground specimen without ultrasonic table. However, In case of using #2000 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was inferior to ELID ground specimen without ultrasonic table.

A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry.

REVIEW OF GROUNDWATER CONTAMINANT MASS FLUX MEASUREMENT

  • Goltz, Mark N.;Kim, Seh-Jong;Yoon, Hyouk;Park, Jun-Boum
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.176-193
    • /
    • 2007
  • The ability to measure groundwater contaminant flux is increasingly being recognized as crucial in order to prioritize contaminated site cleanups, estimate the efficiency of remediation technologies, measure rates of natural attenuation, and apply proper source terms to model groundwater contaminant transport. Recently, a number of methods have been developed and subsequently applied to measure contaminant mass flux in groundwater in the field. Flux measurement methods can be categorized as either point methods or integral methods. As the name suggests, point methods measure flux at a specific point or points in the subsurface. To increase confidence in the accuracy of the measurement, it is necessary to increase the number of points (and therefore, the cost) of the sampling network. Integral methods avoid this disadvantage by using pumping wells to interrogate large volumes of the subsurface. Unfortunately, integral methods are expensive because they require that large volumes of contaminated water be extracted and managed. Recent work has investigated the development of an integral method that does not require extraction of contaminated water from the subsurface. We begin with a review of the significance and importance of measuring groundwater contaminant mass flux. We then review groundwater contaminant flux measurement methods that are either currently in use or under development. Finally, we conclude with a qualitative comparison of the various flux measurement methods.

Effect of Cisplatin on $Na^+/H^+$ Antiport in the OK Renal Epithelial Cell Line

  • Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 1998
  • Cis-diamminedichloroplatinum II (cisplatin), an effective antitumor agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin in the renal proximal tubular transport system, OK cell line was selected as a cell model and $Na^+/H^+$ antiport activity was evaluated during a course of cisplatin treatment. The cells grown to confluence were treated with cisplatin for 1 hour, washed, and incubated for up to 48 hours. At appropriate intervals, cells were examined for $Na^+/H^+$ antiport activity by measuring the recovery of intracellular pH (pHi) after acid loading. Cisplatin of less than 50 ${\mu}M$ induced no significant changes in cell viability in 24 hours, but it decreased the viability markedly after 48 hours. In cells exposed to 50 ${\mu}M$ cisplatin for 24 hours, the $Na^+-dependent$ pHi recovery (i.e., $Na^+/H^+$ antiport) was drastically inhibited with no changes in the $Na^+-independent$ recovery. Kinetic analysis of the $Na^+-dependent$ pHi recovery indicated that the Vmax was reduced, but the apparent Km was not altered. The cellular $Na^+$ and $K^+$ contents determined immediately before the transport measurement appeared to be similar in the control and cisplatin group, thus, the driving force for $Na^+-coupled$ transport was not different. These results indicate that cisplatin exposure impairs the $Na^+/H^+$ antiport capacity in OK cells. It is, therefore, possible that in patients treated with a high dose of cisplatin, proximal tubular mechanism for proton secretion (hence $HCO_3^-$ reabsorption) could be attenuated, leading to a metabolic acidosis (proximal renal tubular acidosis).

  • PDF