• 제목/요약/키워드: Force chains

검색결과 88건 처리시간 0.021초

수종의 합성 고무탄성재의 성질에 관한 연구 (PHYSICAL PROPERTIES OF VAR10US BRANDS OF ELASTOMERIC CHAINS)

  • 김경호;황충주;성상진
    • 대한치과교정학회지
    • /
    • 제27권6호
    • /
    • pp.943-954
    • /
    • 1997
  • 교정적인 치아이동에 필요한 힘들은 orthodontic wire나 여러 가지 elastic rubber등으로 얻을 수 있다. 이중 교정용 elastic rubber는 환경 변화, 시간 경과, 신장(stretch) 정도에 따라 영구 변형과 힘의 소실(force decay)이 다양하게 나타나므로 적용된 힘을 예측하기 힘든 단점이 있다. 본 연구에서는 임상에서 널리 사용되는 3가지 종류 (Ormco : Generation II Power Chains ; brand A, RMO : Energy-Chain ; brand B, Unitek : AlastiK ; brand C)의 교정용 합성고무탄성재를 실험 환경, 초기 힘의 크기, 고무탄성재의 형태 그리고 신장속도를 달리한 뒤 시간에 따른 잔존 힘의 변화를 비교하였으며, 종류에 따른 특징적인 물리적 성질에 대하여 다음과 같은 결론을 얻었다. 1. 세 종류 모두에서 상온의 공기에 보관된 경우 잔존 힘의 비율이 가장 컸으며 물과 타액 간에는 차이가 없었다. 2. 세 종류 모두에서 24시간 이후로는 초기 힘의 크기에 따른 잔존 힘의 비율에 차이가 없었다. 3. A, B는 filament 유무에 따른 잔존 힘의 비율에 차이가 없었으나 C에서는 filament가 있는 경우 힘의 소실이 더 많았다. 4. 신장속도를 달리하여도 잔존 힘의 비율에는 큰 차이가 없었다. 5. B는 각각의 실험조건에서 A, C보다 상대적으로 잔존 힘의 비율이 높았다.

  • PDF

A numerical analysis of the equivalent skeleton void ratio for silty sand

  • Dai, Bei-Bing;Yang, Jun;Gu, Xiao-Qiang;Zhang, Wei
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.19-30
    • /
    • 2019
  • Recent research on the behavior of silty sand tends to advocate the use of equivalent skeleton void ratio to characterize the density state of this type of soil. This paper presents an investigation to explore the physical meaning of the equivalent skeleton void ratio by means of DEM simulations for assemblies of coarse and fine particles under biaxial shear. The simulations reveal that the distribution pattern of fine particles in the soil skeleton plays a crucial role in the overall macroscopic response: The contractive response observed at the macro scale is mainly caused by the movement of fine particles out of the force chains whereas the dilative response is mainly associated with the migration of fine particles into the force chains. In an assembly of coarse and fine particles, neither all of the fine particles nor all of the coarse ones participate in the force chains to carry the external loads, and therefore a more reasonable definition for equivalent skeleton void ratio is put forward in which a new parameter d is introduced to take into account the fraction of coarse particles absent from the force chains.

전단유동에서 자성사슬의 거동에 대한 직접수치해석 (DIRECT NUMERICAL SIMULATION OF MAGNETIC CHAINS IN SIMPLE SHEAR FLOW)

  • 강태곤
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.88-92
    • /
    • 2009
  • When exposed to uniform magnetic fields externally applied, paramagnetic particles acquire dipole moments and the induced moments interacting with each other lead to the formation of chainlike structures or clusters of particles aligned with the field direction. A direct simulation method, based on the Maxwell stress tensor and a fictitious domain method, is applied to solve flows with magnetic chains in simple shear flow. We assumed that the particles constituting the chains are paramagnetic, and inertia of both flow and magnetic particles is negligible. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner, enabling us to numerically visualize breakup and reformation of the chains by the combined effect of the external field and the shear flow. Simple shear flow with suspended magnetic chains is solved in a periodic domain for a given magnetic field. Dynamics of interacting magnetic chains is found to be significantly affected by a dimensionless parameter called the Mason number, the ratio of the viscous force to the magnetic force in the shear flow. The effect of particle area fraction on the chain dynamics is investigated as well.

  • PDF

Effect of three common hot beverages on the force decay of orthodontic elastomeric chain within a 28-day period: An in vitro study

  • Maziar Nobahari;Fatemeh Safari;Allahyar Geramy;Tabassom Hooshmand;Mohammad Javad Kharazifard;Sepideh Arab
    • 대한치과교정학회지
    • /
    • 제54권3호
    • /
    • pp.153-159
    • /
    • 2024
  • Objective: This study aimed to assess the effects of commonly consumed hot drinks on the force decay of orthodontic elastomeric chains. Methods: This in vitro experimental study evaluated 375 pieces of elastomeric chains with six rings placed on a jig. Four rings were stretched by 23.5 mm corresponding to the approximate distance between the canine and the second premolar. Fifteen pieces served as reference samples at time zero, and 360 pieces were randomized into four groups: control, hot water, hot tea, and hot coffee. Each group was further divided into six subgroups (n = 15) according to the different exposure periods. The specimens in the experimental groups were exposed to the respective solutions at 65.5℃ four times per day for 90 seconds at 5-second intervals. The control group was exposed to artificial saliva at 37℃. The force decay of the samples was measured at 1, 2, 7, 14, 21, and 28 days using a universal testing machine. Data were analyzed using repeated-measures analysis of variance. Results: Maximum force decay occurred on day 1 in all groups. The minimum force was recorded in the control group, followed by the tea, coffee, and hot water groups on day 1. At the other time points, the minimum force was observed in the tea group, followed by the control, coffee, and hot water groups. Conclusions: Patients can consume hot drinks without concern about any adverse effect on force decay of the orthodontic elastomeric chains.

First-principles Calculations of the Phonon Transport in Carbon Atomic Chains Based on Atomistic Green's Function Formalism

  • Kim, Hu Sung;Park, Min Kyu;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.425.1-425.1
    • /
    • 2014
  • Thermal transport in nanomaterials is not only scientifically interesting but also technological important for various future electronic, bio, and energy device applications. Among the various computation approaches to investigate lattice thermal transport phenomena in nanoscale, the atomistic nonequilibrium Green's function approach based on first-principles density functional theory calculations appeared as a promising method given the continued miniaturization of devices and the difficulty of developing classical force constants for novel nanoscale interfaces. Among the nanometerials, carbon atomic chains, namely the cumulene (all-doulble bonds, ${\cdots}C=C=C=C{\cdots}$) and polyyne (alternation of single and triple bonds, ${\cdots}C{\equiv}C-C{\equiv}C{\cdots}$) can be considered as the extream cases of interconnction materials for nanodevices. After the discovery and realization of carbon atomic chains, their electronic transport properties have been widely studied. For the thermal transport properties, however, there have been few literatures for this simple linear chain system. In this work, we first report on the development of a non-equilibrium Green's function theory-based computational tool for atomistic thermal transport calculations of nanojunctions. Using the developed tool, we investigated phonon dispersion and transmission properties of polyethylene (${\cdots}CH2-CH2-CH2-CH2{\cdots}$) and polyene (${\cdots}CH-CH-CH-CH{\cdots}$) structures as well as the cumulene and polyyne. The resulting phonon dispersion from polyethylene and polyene showed agreement with previous results. Compared to the cumulene, the gap was found near the ${\Gamma}$ point of the phonon dispersion of polyyne as the prediction of Peierls distortion, and this feature was reflected in the phonon transmission of polyyne. We also investigated the range of interatomic force interactions with increase in the size of the simulation system to check the convergence criteria. Compared to polyethylene and polyene, polyyne and cumulene showed spatially long-ranged force interactions. This is reflected on the differences in phonon transport caused by the delicate differences in electronic structure.

  • PDF

수계 콜로이드 계에서 교류 전계에 의한 입자 배열 제어 (Control of Particle Alignment in an Aqueous Colloidal System by an AC Electric Field)

  • 황연
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.13-17
    • /
    • 2013
  • The alignments of polystyrene particles of $1{\mu}m$ and $5{\mu}m$ sizes in an aqueous colloidal system were observed by varying the electric field strength, the frequency and the water flow. Spherical mono-dispersed polystyrene particles dispersed in pure water were put into a perfusion chamber; an AC electric field was applied to the Au/Cr electrodes with a 4 mm gap on the glass substrate. The mixture of the $1{\mu}m$ and $5{\mu}m$ sized polystyrene particles at 0.5 vol% concentrations for each size was set in the dielectrophoresis conditions of 1 kHz and 150 V/cm. Large particles of $5{\mu}m$ size were aligned to form chains as the result of the dielectrophoresis force interaction. On the contrary, small particles of $1{\mu}m$ size did not form chains because the dielectrophoresis force was not sufficiently large. When the electric field increased to 250 V/cm, small particles were able to form chains. After the chains were formed from both large and small particles, they began to coalescence as time passed. Owing to the electroosmotic flow of water, wave patterns along the perpendicular direction of the applied electric field appeared at the conditions of 200 Hz and 50 V/cm, when the dielectrophoresis force was small. This wave pattern also appeared for small particles at 1 kHz and 150 V/cm conditions due to the flow of solvent when water was forced to circulate.

광탄성 측정 기법을 이용한 입상체 초기 조건의 얕은 기초 지지력에 대한 영향 평가 (Evaluation of the Effect of Initial Condition of the Granular Assembly on the Bearing Capacity of the Shallow Foundation using Photoelastic Measurement Technique)

  • 신상영;정영훈
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.471-491
    • /
    • 2016
  • 고전적인 한계 평형 해석에서 얕은 기초의 지지력은 토체 내부의 파괴면을 가정하여 시작한다. 하지만 입상체 역학의 관점에서 토체의 파괴는 접촉력 사슬 구조의 국부적인 좌굴에 의해 시작된다. 본 연구에서는 모형 토립자를 이용하여 구성한 입상체 상부에 얕은 기초 하중을 재하하여 파괴 시까지 입상체 내부의 접촉력 사슬 분포가 어떻게 변화하는지 관찰하였다. 초기 결함이 없이 규칙적인 구조를 가지는 조건과 입상체 하부에 초기 국부적인 불완전성이 있는 조건을 가진 두 가지 종류의 입상체를 준비하여 실험하였다. 입상체 내부에서 발생하는 접촉력 사슬 구조의 방향 분포는 초기 불완전성의 여부에 따라 매우 큰 차이를 보였다. 초기 불완전성이 있는 입상체는 결함이 없는 입상체가 견딘 하중의 67%만을 견딜 수 있었다.

Temperature-dependent Conformational changes of Single Polymer Chains

  • Ohno, Naoto;Watanabe, Kenji;Nakajima, Ken;Nishi, Toshio
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.342-342
    • /
    • 2006
  • Atomic force microscope (AFM) enables us to stretch a single polymer chain by picking it at its two modified termini. Using this method called "nanofishing," we have studied statistical properties of single polymer chains. A force-extention curve obtained for a polystyrene with thiol termini in a cyclohexane showed a good agreement with a worm-like chain (WLC) model, and thus gave microscopic information about entropic elasticity. In this report, the experiments were performed at wide-range temperatures, resulting in wide-range solvent qualities from poor to good solvent condition. The temperature dependence of statistical properties of polystyrene was examined. The coil-strand transformation realized in a poor solvent was also discussed.

  • PDF

Sensitivity of Conditions for Lumping Finite Markov Chains

  • Suh, Moon-Taek
    • 한국국방경영분석학회지
    • /
    • 제11권1호
    • /
    • pp.111-129
    • /
    • 1985
  • Markov chains with large transition probability matrices occur in many applications such as manpowr models. Under certain conditions the state space of a stationary discrete parameter finite Markov chain may be partitioned into subsets, each of which may be treated as a single state of a smaller chain that retains the Markov property. Such a chain is said to be 'lumpable' and the resulting lumped chain is a special case of more general functions of Markov chains. There are several reasons why one might wish to lump. First, there may be analytical benefits, including relative simplicity of the reduced model and development of a new model which inherits known or assumed strong properties of the original model (the Markov property). Second, there may be statistical benefits, such as increased robustness of the smaller chain as well as improved estimates of transition probabilities. Finally, the identification of lumps may provide new insights about the process under investigation.

  • PDF

유연한 곁가지를 가진 디아민으로부터 층상 구조의 폴리이미드 합성 (Synthesis of Polyimides with Layered Structure from Diamines Containing Flexible Side Chains)

  • 한승산;이미혜;최길영;임승순;김용석
    • 폴리머
    • /
    • 제30권1호
    • /
    • pp.56-63
    • /
    • 2006
  • 층상구조의 폴리이미드 제조를 위해 다양한 곁가지 길이를 가지고 있는 두 종류의 디아민 단량체를 합성하였으며, 이를 이용하여 친수성 유연 곁가지와 친유성 유연 곁가지를 가지는 단일 중합 및 공중합 폴리이미드를 합성하였다. 강직한 주사슬의 충간은 유연한 곁가지로 인해 공간이 채워지게 되므로 곁가지의 길이가 특정 길이에 이르게 되면 주사슬과의 반발력으로 인하여 층상구조를 갖는 폴리이미드를 형성하게 된다. 친유성기를 도입한 단일중합체 폴리이미드의 경우 알킬곁가지의 길이가 증가함에 따라 층간거리가 $32.7\~48{\AA}$으로 증가하였고, 친수성기를 곁가지의 길이에 따라 도입한 경우에는 $7\~10.5{\AA}$으로 증가함을 X선 회절을 통해 확인하였다. 친유, 친수성기가 동시에 도입된 공중합체 폴리이미드의 경우에도 서로 다른 성질을 갖는 곁가지의 반발력에 의해 층상구조의 형성이 가능함을 알 수 있었다. 이를 분자모델링을 통한 이론적 구조계산과 비교해 본 결과, 유연한 곁가지의 길이에 따라 층간간격과 몰부피가 증가하는 층상구조의 폴리이미드 형성을 확인하였다.