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Sensitivity of Conditions for Lumping Finite Markov Chains

Suh, Moon Taek*

Abstract

Markov chains with large transition probability matrices occur in many applications
such as manpowr models. Under certain conditions the state spacé of a stationary discrete
parameter finite Markov chain may be partitioned into subsets, each of which may be treat-
ed as a single state of a smaller chain that retains the Markov property. Such a chain is said
to be “lumpable” and the resulting lumped chain is a special case of more general functions
of Markov chains.

There are several reasons why one might wish to. lump. First, there may be analytical
benefits, including relative simplicity of the reduced model and development of a new model
which inherits known or assumed strong properties of the original model (the Markov
property). Second, there may be statistical benefits, such as increased robustness of the
smaller chain as well as improved estimates of transition probabilities. Finally, the identifi-

cation of lumps may provide new insights about the process under investigation.

I. INTRODUCTION

Markov chains with large transition probability matrices occur in many application such as man-
power models. Under certain conditions the state space of a stationary discrete parameter finite
Markov chain may be partitioned into subsets, each of which may be treated as a single state of a
smaller chain that retains the Markov property. Such a chain is said to be “lumpable” and the resulting
lumped chain is a special case of more general functions of Markov chains. |

Consider a Markov chain {X:t = 0,1,2, ...} with finite state space S = {1,2, ..., n}, stationary
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transition probability matrix p = [p ], and a priori distribution of “initial states”, p® = (p;°, p,°, ...,
pno) Let S denote a nontrivial partltlon of S into m< n “lumps”, say 5= {1(1), L(2), ..., L(m)}. If
{Xt} is lumpable with respect to S, denote by {Xt} the lumped chain with state space’§ and transition
probability matrix [j.

A well-known characterization [Ref. 2] is that {Xt} is lumpable to {3(1} if and only if there

exist matrices A and B such that
BAPB =PB (1.1)

where B consists of m nonzero orthogonal n-dimensional column vectors whose components are zeros
or ones, and A is B with rows normalized to probability vectors (i.e, A = (B B)! B'). The positions of
the 1’s in each column of B correspoiid to staies in S thai together form a lump in'S. It follows that if
BAPB = PB is satisfied, then P = APB as is shown in Chapter 2.

Many of ﬁle mathematical quantities associated with {X ) can be transformed directly to corres-
ponding quantities for {X }, using the lumping matrix B. In Chapter 2, for example, we show that if
an original Markov chain {X,} is lumpable to {X } and {X ] is fur”t\\t_xer lumpable to {X }, then {X,]}
is directly lumpable to {X }, and we give the lumping matrix for {X,} in terms of the underlying two
lumpings. '

There are several reasons why one might wish to lump [Ref. 1]. First, there may be analytical
benefits, including relative simplicity of the reduced model and development of a new model which
inherits known or assumed strong properties of the original model (the Markov property). Second,
there may be statistical benefits, such as increased robustness of the smaller chain as well as improved
estimates of transition probabilities. Finally, the identification of lumps may provide new insights
about the process under investigation.

However, a problem that arises in connection with practical applications of Markov chain models
is to determine whether the chain is lumpable. For cahins with large state spaces S, it is practically
impossible to use an exhaustive search to determine whether lumpability conditions such as those given
in equation (1.1) are met for some matrices B, because of the large number of ways partitioning S, i.e,
the large number of candidate B matrices. For example, if S has'10 elements, there are 115,975 parti-
tions of S.

Another problem is to estimate the matrix P = {pij} of transition probabilities and to find bounds
on A, the largest error of 5 i~ Pjj for all i and j. We shall investigate the sensitivity of the lumping con-
ditions in equation (1.1) for varying A. If {X,] is lumpable with lumping matrix B, is condition (1.1)
satisfied with P replaced by the estimate P9

This thesis will attempt to examine the sensitivity of the lumping conditions based on reasonable
estimation errors A when P is not known and must use estimated by P. We describe these facts about
lumpability using eigenvalues and eigenvectors, including the theorem mentioned by D.R. Barr and

M.U. Thomas {Ref. 3]. We do not review elementary concepts of Markov chains here; the reader may
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wish to consult [Ref. 2] and [Ref. 4] for review of basic racts anu specific terminologies such as lum-

pability, regular Markov chain, etc.

II. THEORY OF LUMPABILITY

This chapter will cover general facts about lumping such as, conditions for lumping, the number
of partjtions possible for any given size of state space S, and theorems associated with eigenvector

conditions for Markov chain lumpability.

A. Conditions for Lumping

Consider a Markov chain {x:t = 0,1,2, ...} with finite state space S = {1,2, ..., n}, stationary
transition probability matrix p = {pu} and a priori distribution of “initial states”, p° = (p, °, p,°, ...,
Py ). Let S denote a nontrivial partition of S into m < n “lumps”, that is S= {L(1), L(2), ..., l(m)].
If {X } is lumpable with respect to S denote by {X } the lumped chain with state space S and
transition probability matrix p.

We now show that if the condition (1,1) for lumpability with respect to the lumping matrix B,

BAPB = PB 2.1)
is satisfied, then the lumped transition matrix P is given by
P= APB (2.2)

Proof. (Eij is the sum « é:L _Pik> Where L(j) is the partition subset containing j € S and i is any
element of L(i). By the lumpabilility condition, this value is the same for any i € L(i). But the pro-
duct PB sums the columns of P in accordance with the partition subsets indicated by the columns of B.
Hence, PB is an n x m matrix with rows repeated in accordance with the partition setsi(1), 1(2), ...,
L(m); the effect of pre-multiplying by A = (B'B) !B is to “average” these common rows yielding an

mx m matrix P without the repeated rows. But such “averages” are just the common rows being averag-

ed. Hence, P = APB is the m X m transition matrix of the lumped chain with state space {I(1), L(2),
.., L(m)}.

Example 1. Consider a transition probability matrix P with 4 states which can be partitioned into

$={{1},{23), (4]} = (L(1), L2), L(3)). Let

1/4  1/16  3/16 12
P= |0 /12 1/12 5/6

0 /12 1/12  5/6

7/8 132 3/32 O
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Then

1 0 0 1 0

B=|(0 1 0| and A=|0 05
01 0 0 0
0 0 1

We know equation (2.1) is satisfied with partitioning

tion matrix is

(0.25 0.25
APB= P = |0 0.167
[ 0875  0.125

-

0
05 0
0 1

$ = {I(1), L(2), L(3) ). Thus, the lumped transi-

Many of the mathematical quantities associated with {Xt} can be transformed directly to corres-

ponding quantities for {X;}, using A and B of equation (2.1). For example, since AB is the m-dimen-

sional identity matrix, it follows that for s a positive integer,

(P)S = (APB)* = A(PB) A (PB) ... A (PB)

We now show that (‘i',)s = APSB

(P)S

(APB) (APB) (APB) ... (APB)
AP (BAPB) (APB) ... (APB)
AP (PB) (APB) . .. (APB)

AP? (BAPB) . ..(APB)
AP?PB . . . (APB)

APS B.

Pad
But APS B =PS,

BAPB =PB
PBAPB = P’B
BAPBAPB = P?B
BAP?B = P?B

= AP°B (2.3)

o~
so P® is Jumpable with the same matrix B and P = AP’B. This implies in turn that if {X, ) has steady

state distribution =, then {Xt} has steady state distribution 7 = 7B.

Theorem 1. The steady state distribution 7 of the lumped chain {X,} is 7B where 7 = 7P

— 114 -



Proof. 7B = (aP)B
7B (APB)

(B)P

Therefore,"fr = 7B.

-~
Similarly, the a priori distribution P of the initial state of the lumped chain corresponding to that
o~
of the original chain P°, is given by P° = P®B, since by equations (2.1) and (2.3),

B = p°% ... PB
= p°P ... PBAPB
= p°% ... PBP
= poBPS.

Note that POPSB is the distribution of lumped states occupied by the lumped chain after s transi-
tions. Since this equals POBF = Poﬁ it follows that P‘> =pOp.

B. Partitions of a Set of States

The matrix B consists of m nonzero orthogonal n-dimensional column vectors whose components
are zeros and ones which determine a specific partition of S = (1,2, ..., n}. Example 1 illustrates this,

where the state space S = {1,2,3,4} is partitioned into

= {[1}, {23}, {4}} = {L(11), L(2), L(3)} , and

0
B= 1
1
0

- O O O

1
0
0
0

Permutations of these columns give a matrix which also lumps {Xt}. In order to see this, let B*
be B with columns permuted in some order. Then B* = BI*, where I is the identity matrix with its

columns permuted in the same order. Now if BAPB = PB, then

B* (B* B*)™! B* PB*

= BI*(I* B BI*)"! [*B'PBI*

= BI* (%! @By 0¥)! I* B'PBI*
= B(B'B™!) B'PBI*

= BAPBI*

= PBI*

= PB*

B*A*PB*
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. . . s *
j0 it follows that {-Xt} is also lumpable with respect to the matrix B .
Now, how many candidate lumping matrices are there? This would be the number of partitions

of S. {Ref. 5} gives a recursion relation for the number Ay of ways of partitioning a set S =
[1,2,..,N}:

N-1 /N1
Ay = E_()( ) ) A (N>1,4,=1) 2.4)

From this relation we find A, =1, A; =2, Ay =5, Ay = 15, etc. The sizes of the entries in Table 1
show that it would be impossible to use a trial and error approach to finding lumping matrices
B for lumping a chain with larger state spaces, say with 10 or more elements. Values of Ay for larger

N are shown in Table 1.

Table 1. Partitions of a Set of N States

N Partitions N Partitions

5 52 20 5.172415 x 108
6 203 30 8.467490145 x 102
7 877 40 1.574505884 x 10
8 4,140 50 1.857242688 x 1047
9 21,147 60 9.769393075 x 10%°
10 115975 70 1.80750039 x 107

It is of interest to be able to systematically prescribe alternative lumpings by generating matrices
B for a given transition matrix P, using some method other than trial and error. In the next section, we

describe an approach to finding B matrices using the eigenvalues and eigenvectors of P.

C. An Eigenvector Condition for Markov Chain Lumpability

Many problems in science and mathematics deal with a linear operator T: V-» V, and it is of im-
portance to determine these scalars for which the equation Tx = Ax has nonzero solutions x. In this
section we discuss this problem and its relationship with finding matrices B.

Theorem 2. The value 1 is always an eigenvalue for any Markov chain transition probability
matrix.

Proof. Let P be any n x n transiton probability matrix of {Xt} , X be a left eigenvector in R, and

A be the corresponding eigenvalue of P. Then xP = xA which is equivalent to

x(P-A) =0 (2.5)
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For A to be an eigenvalue, there must be a nonzero solution x of equation (2.5). Equation (2.5) will

have a nonzero sclution if and only if

det (P~ \I)=0 2.6)

This is called the characteristic equation. To show tnat A =1 always satisfies equation (2.6), we need

only show that the columns of the matrix in equation (2.6) are linearly dependent. Note that

®-0) =[P P ...P 1 0...0
P P...P 0 1...0
L.pP - .- o) 0 0...1
=[P—1 P...P...p]
P p-1 P
e e e @
. P P p-1 |

n
Since X P;: =1 for Markov chains, it follows that the rows in equation (2.7) sum to zero, so the

determi]n=ant inlaequation (2.6) is zero with X = 1. It follows that A = 1 is an eigenvalue of the Markov
chain {Xt} . We’d next like to see properties of eigenvectors corresponding to the eigenvalue A=1.
Theorem 3. For any regular Markov chain, components of the eigenvector corresponding to A= 1
are proportional to the steady state distribution of {Xt} .
Proof. Let x be a left eigenvector of P, and A be the corresponding engenvalue of P, such that
XxP = xA, and assume iznl X;= 1. For given A = 1, xP = x. The steady state distribution of {Xt} is
unique [Ref. 4]. Therefore, x must be the steady state distribution 7 since 5 x;=1.

i=

The following example demonstrates Theorem 3.

Example 2. Let
1/4 1/16 "3/16 1/2
P=1]0 1/12 1/12 5/6
0 1/12 1/12 5/6
7/8 1/32 3/32 0

The eigenvectors corresponding to the eigenvalues of P are displayed as column vectors below:

Eigenvalues : [ 1 0 ~0.25 -0.3333 ]
0.7367 0 10.5 0.8247
Eigenvectors : 0.09209 -0.7201 -0.375 -0.03436
0.2236 0.7201 -4.125 -0.2405
L 0.6315 0 -6 -0.5498 |
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Note that 7 = (my, my , M5 , M)
(0.4375, 0.0547, 0.1328, 0.375),

0.7367
where = , etc.

0.7367 +0.09209 +0.2236 + 0.6315

Theorem 4. Eigenvectors corresponding to eigenvalues other than 1 are orthogonal to e =

(1.1,..,1).
Proof. xe’ = x(Pe’) = (xP)e’ = xAe’. Therefore, xe’ must be zero forA #1.

We are also interested in finding the felationship between eigenvalues of P and those of lumped
transition probability matrix’I;’, where P = APB as described above.

Theorem 5. Suppose (X} with transition matrix P is lumpable to {;(:} with transition matrix P.
The eigenvalues of P are eigenvalues of P. _

Proof. Let a (A) = 0 be the (nth degree) characteristic equation of P. By the Cayley — Hamilton
theorem [Ref. 6],

Oz(P)=cvnPn+ozn_1Pn'1 +...+0yPtal=0,
which together with equation (2.3) implies
~ ~
Ac(P)B = o+ azn_lP“'1 +...+al
o (@) |
= 0

Since'i; satisfies P's characteristic equation and since eigenvalues of & (5) are of the form aa), it
follows that a(sx’) =0. Thusall eigenvalues'i of P are also eigenvaiues of P.

We next examine the eigenvectors of P and ’i”, with the aim of identifying lumpings of {Xt}
directly in terms of the eigenvectors of P. We have seen that’l;b is obtained directly as p°®B;a similar
relationship holds with eigenvectors of P.

Theorem 6. Suppose X is a left eigenvector of P corresponding to eigenvalue A, and suppose X
is lumpable to a chain with transition matrix P = APB. Then xB satisifes the equation (xB)P = (xB)A.

Proof. By equation (2.1), (xB)’is = xBAPB = xPB. But xP = x}, and the result follows.

We note that xB is not necessarily an eigenvector of P because it may be zero. In fact, it easily
follows that xB = 0 if A is not an eigenvalue of P. But xB may be null even if A is an eigenvalue of P,
in cases of where A is a repeated eigenvalue of P more times than of P.

[Ref. 7] pointed out some other-useful properties associated with eigenvalues and eigenvectors
such as: 1) if the matrix P is symmetric, then eigenvalues are real and eigenvectors are different for
repeated eigenvalues, 2) if the matrix is not symmetric, then the eigenvectors are the same for
repeated eigenvalues.

Theorem 7. If {X,} with transition matrix P is lumpable to {'?(t} with transition matrix (1\”, and
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{X;} is lumpable to ()’(-t} with transiton matrix?, then {X;} is directly lumpable to (—)-(t} where
(X} is the lumped chain of {X,) .

Proof. Let {Xt} be lumpable to (it} , and {3(1} be lumpable to {Z} by matrices B; and B,,
where B; and B, are lumi)ing matrices in which the dimension n x m of B, is greater than that of B,.
By equation (2.1),P = A, PB; and P = A,PB,. Thus,

P=A,PB, = A, (APB,) B, = (A,A,) P(B;B,)

To see that B{B, is a lumping matrix and A,-A, is of the required form, we need to show that
(Az - A1), (B - By)is the identity matrix as mentioned in Section A. But

(Az‘ Al)' (Bl' B2)= A2' (Al' Bl)' B2= A2' Ie B2 = A2' B2 =1.

Also, note that B;» B, is B 1ﬂ1umped by B,, so By « B, has columns of the required form. Therefore,

{X;} is directly lumpable to {X{}, by the lumping matrix B=B,+ B, .

Example 3. Consider a Markov chain with 5 states, and transition probability matrix.

03 01 02 01 03
P= | 01 03 01 03 02
05 01 0 01 03
01 05 02 01 01
Los 0o o1 02 02|

First, consider S = {1,2,3,4,5} which can be partitioned to S= {{1}, (2,4}, {(3,5}) = {L (1), L(2),

L(3)}. The corresponding lumping matrices are

1 00

0 1 0 1 0 0 0
Bi= | 0 0 1 |and A,= 0 05 0 05 0

01 0 0 05 0 05 1,

0 0 1

and the lumped transition probability matrix is

03 02 05
P=APB = 0.1 06 03
05 02 03

Secondly, consider Ewith 3 states which can be partitioned 08 = {{1.3}. {2} )} ={L(1), L"(2)} with

matrices
0 0.5 .
1 and A, = : 0 0.5
0 0 1 0

—~119 -
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The corresponding lumped transition matrix is

p—

P = A,PB, = [0.8 0.2 }
0.4 0.6

Finally, consider lumping the transiton probability matrix directly. For partitioning,

F={{135), (24]) = (L"(1), L"(2)}, and

[1 0] 1 0 0

0 1 0 1 o1 O _

1 0|=B;B,=0 0 1[0 1| ,A-A =(1/3 0 1/3 0 13
0 1 0 1 oft1 o0 [0 /2 0 1/2 0 ]
L1 04 L0 O IJ

and the directly lumped transiton probability matrix is

P=ros 02
[0.4 0.6 :]

Theorem 7 shows that lumping is “transitive”, in the following sense. Define two transition
matrices P and Q to be equivalent, (P = Q), if Q = Pfora lumping matrix B whose columns are those of
the identity matrix, in some permuted order. (Thus the chain {X;} and {Y¢} differ only in the labels
associated with their states). Define a relation “<” between transition matrices as follows: Q< Pif
and only if Q = P for some lumping matrix B. Then theorem 7 shows that Q <P, R< Q2R <P.
This relation “<” is reflexive, since Q < Q using the lumping matrix I (identity). Finally, “<”is
antisymmetric since Q <P and P < Q $ P = Q. Thus, the set if all transition probability matrices is
patially ordered by the “lumping” partial order, “<”".

II1. BOUNDS ON THE LARGEST ERROR, A, IN P

In this chapter we consider three procedures to find bounds on A. First, we use the central limit
theorem for given i and j. Secondly, we use a binomial approximation on the basis of the first pro-
cedure. Finally, we get the largest error A, using the asymptotic extreme value distribution. These
three approximations are only designed to give a rough idea of the relationships between A and the
number M of elements in the state space, the total number of observed transitons K.,,and the proba-
bility c.

A. Approach Using Central Limit Theorem

~N
We are interested in the sizes of the errors between the estimate P and the unknown P, where P is the
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transition probability matrix of {X,}. We assume the transition probability matrix P is of size M x M.
Let Kij be the number of observed transitions of {X,} from state i to state j, and let K, be the
number of observed transitions from state i. Similarly K+j is the number of observed transitions into
state j.
Let pij be an unknown transition probability from state i to state j and ?’ij be an estimate of Pij
based on K..observed transitions. Then the usual estimate ’ﬁij of Pjj is the ratio of Kijj to Ki" Now,
as a rough approximation, imagine that Ki. is fixed, and the number of transitions from state i to state

j, K., is Binomial (Ki° ) pij)- Then by the central limit theorem,

ij’
. i imate by Normal K;- pyj (1-py)
i 1s approximate y orm [Pij ,“W——‘
since
n ) Kij o o
A K
Var[Pij] = Var[ 1]
k; .
Var [KIJ]

¥ &
K;. Pjj (1-Pj) G1)
- 3.
(Xj.)?

We want to find a bound A on the estimation error | pij — pij | which occurs with probability at least
a ; that is, the largest Afor which

P[llﬁij_pijl = Al 2 a

Now p
_ . — D..
ii ij A
Pp; —p; | =A] =P[ > . (3.2)
4 1/Ki-l’ij (Ipy) | /K. py (Ipyy) ]
&;)? K;.)?
Eald
Py — Py
Let Z = T———"—"——= | then

k. Py (1-Py)
K.

Z is approximate by standard Normal. Rewrite equation (3.2) as
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A
PIIZ|> —————] > a;0<a<l.

LINTRT
Equation (3.2) is approximately

!
P[Z> = 1> —
K,.- pij (I-Pij)

(Ki l)2

since the Normal distribution is symmetric. Solving for A, we have

1
a<Nl a- 2y [pa-py ——
2 1) 1)

Txi.

where N1 a- %) is the (1 — %‘- )t:l quantile of the standard Normal distribution. Suppose the
steady state probability =; of state i is }; based on the equally likely case, and suppose the worst case

in which
1

Then an approximate value for A is given by

A = Nlg_Ly @9 L
) ©

¥

= Nla-2) @9
2

,J‘HIK

= Nla-2) s L
2 TK.

™
™

= Nla-Zy o5 .
2 K..

(3.3)

Equation (3.3) concerns the eror Isij - pijl for fixed i andj. We’d now like to find an error bound
Aoveralli and j. That is, we wish to find the largest A for which

P ‘ﬁij“pijl 2 A forsomeiandj] > a,

which is roughly the same as

—-122 —



(¢

P [f)ij — Py > A forsomeiandj] > . 34)
We apply the binomial approximation in equation (3.4), so that
P [ﬁij - Py > A for someiand j]
=1_P [Qj — Py < Aforalli and j}
a 2

a
Letl1 —(1 - E)M2 = B for some 0 <8< 1. Solve for a, which gives

«=2-2MyT-5 . (3.6)

Substitute the value of & in equation (3.6) into equation (3.3). Finally we get the approximate bound
Aforalliandj:

2 M
A~ N"(M/1 _5) ©5) /? (3.7

Equation (3.7) gives an approximate expression for A, using binomial approximation.

B. Approach Using Order Statistics

Assume Z,, Z,, ..., Zyy are independent continuous random variables, each with density function
f Z(z) and distribution Fz (z). Now let Z(l ) Z(2) ) Z(M) denote their ordered values, from smallest
Z(l) to largest Z(M); these are called the order statisticsof Z,,Z,, ..., ZM‘ We now consider the pro-
bability law for Z(M) [Ref. 8], the largest or maximum value.

The event IZ(M) < z] occurs if and only if the event [Z, <2z,Z, < z, ..., VAYES z] occurs,
since if the largest Z is smaller than z, all M of the random variables must be smaller than z, where z is

any fixed real number. The distribution function for Z(M) is

) = PlZyy<z]
P2 <2,Z, <z,..,Zy <1

Tz

]

PZ, <z] P[Z, <z} ...P[Zy < z)

since Zy, Z3, ... , Z)q are assumed independent. But each of Z,, Z2 s e D\ ‘has the same distribution
FZ (Z). So
= M
F z) = [Fp(z
zan @ = F2®)]
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The density function for Z then is

(z)=——d—F

"z & Zon®

n

d
- e

M (F; @M L, (2)

dF.
where fy(z) = ” Z(Z)

Z

Consider the limiting distribution function of the maximum Z(M) as M tends to infinity. [Ref. 9,
10] show this distribution is -

. M o~ V2logM (Z — ¥ 21ogM)

lim [Fz(2)]™ = e (.8)

My oo )
ifZy,Z,, ..., ZM is a random sample from standard Normal population. We want find a bound A on
the largest of M? errors between estimates in P and the unknown components of P. The random
variables Sij — pjj are very roughly Normal with mean O and variance ZM— which is derived from equa-
tion (3.1) fori,j =12, ..., M. Recall that K.. is the total number of transitions observed.

Let Xp = f’\ij ~ Py where £ = 1,2, ..., M®. Then we know the random variable X is approximately

equal to 2'/K Z, where Z has a standard Normal distribution. Let the random variable X(Mz) be

equal to max l’gij — Py |. Then

. < = i ' B —pu | <
hldnng Xmzy< 2] I{l'ng[maleu Pyl <4l

: S =D 2 — 8. _p. <
P [smallest of P — Py A and largest of Pj; — Pjj A]

Now X(l) and X(M"’) are asymptotically independent, so tor large M,

lim P [Xqy2) < 4]
My

(P[X, >—A] ... P[Xyp >—Al}a [Fy )]V

i}

[t —Fy (- 1™ - fE ™’

oMm?
[FX(A)] . (3.9)
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From equation (3.9) we derive an expression for A as follows. Let A be the largest value for wnicu
P [X(M2) < A] <l-a.

This is the complementary probability because we wish to have P [| lﬁij — Pjj | = A for some i and j]

2 o, as in the previous section. The limiting distribution function of the maximum X (M'z )is the same

im [Fy@1?M = 1im [Fz(ZA/ - )2

M->oo M oo
K.. / -\
42 log 2M? ZA/F - 210g2M2)

as

Then, approximately,

log(1—a)x —e~ 121082M* (57 /50 — /2100 2m2 )

and

log {—log (1 —a)} =~ —4 21log2M? (2 AA/% — 4 2 log2M? ) .

Finally,

M loglog 1
A~ (O.5)ﬁ<4210g2M2 __._ﬁ) (3.10)
K. 9 2 log2M?

Equation (3.10) is an approximate expression for A based on the asymptotic distribution of the
extreme order statistic. We will compare the central limit theorém A’s with those obtained with the

extreme value distribution, in the next section.

C. Comparison of the Three Expressions

The three expfessions for A obtained using the central limit theorem and order statistics have been
developed under aporoximations such as: 1) the steady state distribution of {X;) is 1— (equally
likely), 2) the variances of Ip1J Pij { have 41}4( as a maximum value (worst case), and 3) a]l transmons
are independent. Information about {Xt} is from the estimate P because we don’t have information
about the unknown P. In a view of the above approximations and computations, our expressions for
A are very rough. However they do provide some insight into the occurrences and sizes of estimation
errors in /13

Figure 3.1 contains 3 graphs showing A as a function of K.. and M for fixed & = 0.90 based on the
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Figure 3.1 Variation of A for varying K.. and M.

three expressions (3.3), (3.7) and (3.10).

The first graph shows error bounds using the central limit theorem on aij ~ Py for fixed i and j.
The second graph is given by the same approach as the first graph, except overall estimation errors are
considered, for all i and j. The third graph is based on the asymptotic distribution of the largest value
of |ﬁij — py;l over all i and j.

From Figure 3.1 we see that the largest estimation error depends very much on the number of
transition observations and matrix size, but not so much on the « value as seen from Figure 3.2.
Graphs 2 and 3 in Figure 3.1 are very similar even though they use different approaches. They givean
idea of how large likely values of A are for given K.. and M, in the “worst case”.

If we consider a Markov chain {X,} with M = 20 or 30 states, and we have observed K = 5000
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A
transitions then, roughly, it is likely (prob = 0.90) that at least one element of P is in error by at least

0.1. In general, expressions (3.7) and (3.10) may be useful for Markov chains {X,} with M =20 or 30
states and large numbers of observed transitions.

D. Sensitivity of Lumping Conditions

We have developed expressions for 4, using the central limit theorem and order statistics. We want
to examine the sensitivity of the lumping conditions applied to ’f, the estimate of P. If equation (2.1),
which is a necessary condition for lumping a Markov chain with transition matrix/i’, is satisfied, then
the lumped transition matrix Pis given by equation (2.2). However, even though P satisfies the
lumping conditions, it is extremely unlikely that its estimate /13 will also satisfy these conditions, as
we shall now demonstrate.

In order to simulate the difference between/l3 and P, consider a matrix of errors R%, where R is
a random matrix with dimension the same as P, whose components are I’s,-1’s, and O’s where the sum
of each row is zero. Now consider the lumpability of the simulated estimate P*, which is constructed
by taking P plus the random matrix R times 4, that is, P* = P + R4,

To show the sensitivity of the lumping conditions, we assume the unknown P is lumpable with
lumping matrix B, and consider the difference (BAP*B — P*B). If equation (2.1) is satisfied by P*
then all of these components must be zero.

Theorem 8. The difference (BAP*B — P*B) is a linear function of 4.

Proof.  Let R be the random matrix as defined above and let P* =P + RA, Then (BAP*B — P*B)
is given by
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{ BA(P+R4)B~ (P+R"4)B} = (BAPB+BAR2B—PB—-RAB)
= (BAPB - PB+ (BARB — RB)2)
= (BARB-RB) &
= c-A

Therefore the difference of BAP*B — P*B is linearly dependent on & and P* is not lumpable unless
BARB =RB (x e., Ris “lumpable”), which is not likely to oceur.

Since P is likely to have elements differing appreciably from the correspondmg elements in P
(errors of size &), it can be seen that the lumpability conditions will not be satisfied (not even nearly
so) by P even though { Xt} is lumpable, We conclude that attempting to check the lumpability of the

estimate P when P is not known is not useful.

IV. SUMMARY AND CONCLUSIONS

- We have given several theorems associated with eigenvalues and eigenvectors for lumpable Markov
chains {Xt} with finite state spaces. We have derived rough, approximate mathematical expressions
for the largest error made in estimating P by P based on transition data.

Both expressions (3.7) and (3.10) are very similar even though the estimated s for the first
expression are slightly less than those in the second expression. These expressions show that the largest
estimation errors depend very much on the number of transition observations and on the matrix size,
but not so much on the o value.

Since /15‘ is likely to have elements differing appreciably from the corresponding elements in P, it
is of interest to examine whether the equation BAPB = PB is likely to be nearly satisfied with'i’, ie.,
will LBA’};B - II;B) be nearly zero? This is examined by simulation of “estimates™ p* of P, using random
perturbations of elements of P of sizes & which are likely to occur as errors in P

This shows that the classical lumping conditions are extremely sensitive to estimation errors which
can be expected to occur even when a large number of transitions have been observed. Thus, the
classifical lumping conditions may be of limited value in many actual applications.

As further research, it is recommended that some constructive approach to finding matrices B for
lumping a lumpable Markov chain { Xt} be developed, perhapsi along the lines of the theorems
mentioned in Chapter 2. It is hoped that the present study will be useful to those who might other-
wise have endeavored to check the classical condition for lumpability of a Markov chain { Xt} when

the transition matrix P has been estimated.
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