• Title/Summary/Keyword: Force Display

Search Result 380, Processing Time 0.025 seconds

A Phenomenological Study on the Work-Family Compatibility of Dual-Earner Families (맞벌이가족의 일-가정 양립에 관한 현상학적 연구)

  • Kim, Seunghee;Kim, Seonmi
    • Human Ecology Research
    • /
    • v.51 no.3
    • /
    • pp.355-370
    • /
    • 2013
  • The purpose of this study is to investigate the nature of work-family compatibility in the everyday experiences of dual-earner families. By comprehensively describing how dual-earner families manage daily life, this study shows their current situations. In particular, this study overcomes the limitations of previous studies using the phenomenological research methods. Previous studies partially dealt with the problems of dual-earner couples, such as the role conflict of wives and husbands. However, this study broadly demonstrates how wives and husbands as independent individuals manage their lives by working together for a living. Participants were 6 males and 6 females, who lived in Gwangju metropolitan city. Data were collected through in-depth interviews and analyzed using the method of Stevick-Colaizzi-Keen in Moustakas (1994). The results of this study display that dual-earner couples work for a living, but work is the driving force in their life. Family provides dual-earner couples with a stable life, but their stable life is possible by social support like the assistance of a mother-in-law. Dual-earner couples consider work and family as the essential axis of life, thus they give the same value on work and family. Even though dual-earner couples have a difficult time educating their children because of long working hours and coming home late, they positively combine work and family meeting the needs of self-improvement. Therefore, it is necessary to create a working environment that provides enough time for housework and childcare.

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

QoS Support in the Air Defense Alternative System (방공작전 예비체계의 QoS 지원)

  • Sim, Dong-Sub;Lee, Young-Ran;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.903-909
    • /
    • 2010
  • ADAS is the air defense control system performing air surveillance and identification of ROK and near air. This system is self-developed by Air Force, currently operated successfully as the alternative system of MCRC. ADAS processes converting and combining transferred the real time radar data detected by radars. additionally, it displays significant radar data as producing in tracks. Then, it uses the message queue for IPC(Inter Process Communication). the various tactical data processed in the server is ultimately send to the network management process through the message queue for transmitting to the weapon director console. the weapon director receives this transmitted tactical data through the console to execute air defense operations. However, there is a problem that data packet is delayed or lost since the weapon Director does not receive as the amount of tactical data from the server overflowed with air tracks and missions increased. This paper improved the algorism to display and transmit the various tactical data processed from ADAS server to numbers of the weapon director console in the real time without any delay or lost. Improved the algorism, established at exercise, the development server in the real operation network and the weapon director console, is proved by comparing the number of sending tactical data packets in the server and receiving packets in the weapon director.

Study on Electro-Optical Specific of Polyimide and Organic Overcoat (PI와 유기 절연막 과의 전기광학 특성 비교에 관한 연구)

  • Kim, Byoung-Yong;Kim, Jong-Hwan;Han, Jeong-Min;Kim, Young-Hwan;Kang, Dong-Hoon;Kim, Jong-Yeon;Ok, Chul-Ho;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.376-376
    • /
    • 2007
  • In Liquid Crystal Display (LCD) manufacturing, the organic over coat materials over coat materials for insulation layer of color filter with acryl ate was widely used. Therefore, we approach that the organic overcoat material can use to insulation layer for color filter and liquid crystal (LC) alignment layer in this research. The LC aligning capabilities was successful stuided for the first time. The organic overcoat layer and polymer layer was coated by spin-coating. In order to characterize the LC alignment, electric optic and residual DC and atomic force microscopy (AFM) image was used. The good LCD aligning capabilities treated on the organic overcoat thin film surfaces with ion beam exposure of $45^{\circ}$ above ion beam energy density of 1200 eV can be achieved. Also the good LCD alignment capabilities treated polymer on surfaces with ion beam exposure of $45^{\circ}$ above ion beam energy density of 1800 eV can be achieved. Comparing electro-optical characteristics between the Polyimide (PI) and the overcoat, the resultant transmittance of the overcoat considerably matched that of the PI and the residual DC also exhibited similar features with the PI.

  • PDF

Atomic Layer Deposited ZrxAl1-xOy Film as High κ Gate Insulator for High Performance ZnSnO Thin Film Transistor

  • Li, Jun;Zhou, You-Hang;Zhong, De-Yao;Huang, Chuan-Xin;Huang, Jian;Zhang, Jian-Hua
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.669-677
    • /
    • 2018
  • In this work, the high ${\kappa}$ $Zr_xAl_{1-x}O_y$ films with a different Zr concentration have been deposited by atomic layer deposition, and the effect of Zr concentrations on the structure, chemical composition, surface morphology and dielectric properties of $Zr_xAl_{1-x}O_y$ films is analyzed by Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and capacitance-frequency measurement. The effect of Zr concentrations of $Zr_xAl_{1-x}O_y$ gate insulator on the electrical property and stability under negative bias illumination stress (NBIS) or temperature stress (TS) of ZnSnO (ZTO) TFTs is firstly investigated. Under NBIS and TS, the much better stability of ZTO TFTs with $Zr_xAl_{1-x}O_y$ film as a gate insulator is due to the suppression of oxygen vacancy in ZTO channel layer and the decreased trap states originating from the Zr atom permeation at the $ZTO/Zr_xAl_{1-x}O_y$ interface. It provides a new strategy to fabricate the low consumption and high stability ZTO TFTs for application.

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique (LPCVD로 형성된 실리콘 나노점의 전계방출 특성)

  • An, Seungman;Yim, Taekyung;Lee, Kyungsu;Kim, Jeongho;Kim, Eunkyeom;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.342-347
    • /
    • 2011
  • We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.

Optical Properties of Silicon Oxide (SiOx, x<2) Thin Films Deposited by PECVD Technique (PECVD 방법으로 증착한 SiOx(x<2) 박막의 광학적 특성 규명)

  • Kim, Youngill;Park, Byoung Youl;Kim, Eunkyeom;Han, Munsup;Sok, Junghyun;Park, Kyoungwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.732-738
    • /
    • 2011
  • Silicon oxide thin films were deposited by using a plasma-enhanced chemical-vapor deposition technique to investigate the light emission properties. The photoluminescence characteristics were divided into two categories along the relative ratio of the flow rates of $SiH_4$ and $N_2O$ source gases, which show light emission in the broad/visible range and a light emission peak at 380 nm. We attribute the broad/visible light emission and the light emission peak to the quantum confinement effect of nanocrystalline silicon and the Si=O defects, respectively. Changes in the photoluminescence spectra were observed after the post-annealing processes. The photoluminescence spectra of the broad light emission in the visible range shifted to the long wavelength and were saturated above an annealing temperature of $900^{\circ}C$ or after 1 hour annealing at $970^{\circ}C$. However, the position of the light emission peak at 380 nm did not change at all after the post-annealing processes. The light emission intensities at 380 nm initially increased, and decreased at annealing temperatures above $700^{\circ}C$ or after 1 hour annealing at $700^{\circ}C$. The photoluminescence behaviors after the annealing processes can be explained bythe size change of the nanocrystalline silicon and the density change of Si=O defect in the films, respectively. These results support the possibility of using a silicon-based light source for Si-optoelectronic integrated circuits and/or display devices.

Optically Transparent ITO Film and the Fabrication of Plasma Signboard (투명 전극 ITO 박막의 열처리 영향과 플라즈마 응용 표시소자 제작에 관한 연구)

  • Jo, Young Je;Kim, Jae-Kwan;Han, Seung-Cheol;Kwak, Joon-Seop;Lee, Ji-Myon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Indium tin oxide(ITO) thin films were deposited on the glass substrates by radio-frequency (RF) magnetron sputtering method. The influence of rapid thermal annealing (RTA) treatment on the optical and electrical properties of the films were investigated for the purpose of fabricating plasma display signboard. Structural properties, surface roughness, sheet resistance and transmittance of the ITO film were analysed by using x-ray diffraction method, atomic force microscopy (AFM), four point prove, and ultraviolet-visible spectrometer, respectively. It was found that the RTA treatment increased the transmittance and decreased the resistivity of the ITO film, respectively. Furthermore, we successfully demonstrated the direct-current plasma signboard by using ITO electrode and phosphors.