• Title/Summary/Keyword: Foodborne pathogenic bacteria

Search Result 84, Processing Time 0.027 seconds

The Effects of Antibacterial Activity of Exopolysaccharide Isolated from Tibetan Mushroom Culture against Foodborne Pathogenic Bacteria: A Preliminary Study

  • Kim, Tae-Jin;Seo, Kun-Ho;Chon, Jung-Whan;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.68-77
    • /
    • 2021
  • This study aimed to evaluate the effects of antibacterial activity of Tibetan mushroom exopolysaccharide against foodborne pathogenic bacteria Staphylococcus aureus 305, Listeria monocytogenes ATCC19114, Escherichia coli O157:H7 ATCC42894 and Escherichia coli O55. The yield of exopolysaccharide isolated from Tibetan mushroom culture was 620 mg/L. The antibacterial activity of exopolysaccharide against foodborne pathogenic bacteria exhibited 15 mm and 12 mm clear zone against S. aureus 305 and L. monocytogenes ATCC 19114, respectively. However, no clear zone was observed against E. coli O157:H7 ATCC 42894 and E. coli O55. In conclusion, exopolysaccharide isolated from Tibetan mushroom culture have the antibacterial activity only against Gram-positive foodborne pathogenic bacteria.

Antimicrobial Effects of Lactic Acid Bacteria Isolated from Tibetan Yogurt against Foodborne Pathogenic Bacteria (티베트 요거트에서 분리한 유산균의 병원성 세균 항균 효과 연구)

  • Gho, Ju Young;Lee, Jiyeon;Choi, Hanhee;Park, Sun Woo;Kang, Seok-Seong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.121-127
    • /
    • 2021
  • Yogurt is produced by bacterial fermentation of milk and contains lactic acid bacteria (LAB), which produce various metabolites such as organic acid, hydrogen peroxide, and bacteriocin. This study aimed to investigate cell-free supernatants (CFS) of LAB isolated from Tibetan yogurt. CFS (TY1, TY2, TY3, TY4, TY5, TY6, and TY7) from selected strains of LAB were co-incubated with four different foodborne pathogenic bacteria, namely E. coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus. Inhibition of foodborne pathogenic bacterial growth was not affected in the presence of CFS (pH 6.5). In contrast, CFS without neutralization completely inhibited the growth of the bacteria. Furthermore, when the concentration of CFS (without neutralization) was changed to 1:4 and 1:8, a difference in inhibition was observed between Gram-positive and Gram-negative bacteria. CFS more effectively inhibited the growth of Gram-negative E. coli O157:H7 and S. Typhimurium than Gram-positive L. monocytogenes and S. aureus. These results suggest that organic acids in LAB may inhibit the growth of foodborne pathogenic bacteria, particularly Gram-negative bacteria.

Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential

  • Hwanhlem, Noraphat;Salaipeth, Lakha;Charoensook, Rangsun;Kanjan, Pochanart;Maneerat, Suppasil
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.355-364
    • /
    • 2022
  • From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39℃, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.

Antimicrobial Action of Raphanus raphanistrum subsp. sativus (radish) Extracts against Foodborne Bacteria Present in Various Milk Products: A Preliminary Study

  • Lim, Hyun-Woo;Song, Kwang-Young;Chon, Jung-Whan;Jeong, Dongkwan;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2019
  • Seeds and leaves of Raphanus raphanistrum subsp. sativus (radish) are known to contain "raphanin," which has the potential to inhibit pathogenesis associated with foodborne pathogenic bacteria and fungi. In this study, ethanol extracts from R. raphanistrum subsp. sativus (radish) powder was evaluated for antimicrobial action against 6 different foodborne pathogenic bacteria. The current study demonstrated the potential of R. raphanistrum subsp. sativus (radish) in inhibiting the growth of Salmonella enteritidis 110, Cronobacter sakazakii KCTC 2949, Bacillus cereus ATCC 10876, and Staphylococcus aureus ATCC 6538. However, these antimicrobial action were not observed against Listeria monocytogenes ATCC 51776 and Escherichia coli 23716. Hence, this study indicates that R. raphanistrum subsp. sativus (radish) could be used as a natural biopreservative with antimicrobial effects for improving food safety, and as a functional food in the commercial food industry.

Sample Preparation and Nucleic Acid-based Technologies for the Detection of Foodborne Pathogens (식중독균의 검출을 위한 시료전처리 및 핵산기반의 분석기술)

  • Lim, Min-Cheol;Kim, Young-Rok
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • There have been great efforts to develop a rapid and sensitive detection method to monitor the presence of pathogenic bacteria in food. While a number of methods have been reported for bacterial detection with a detection limit to a single digit, most of them are suitable only for the bacteria in pure culture or buffered solution. On the other hand, foods are composed of highly complicated matrices containing carbohydrate, fat, protein, fibers, and many other components whose composition varies from one food to the other. Furthermore, many components in food interfere with the downstream detection process, which significantly affect the sensitivity and selectivity of the detection. Therefore, isolating and concentrating the target pathogenic bacteria from food matrices are of importance to enhance the detection power of the system. The present review provides an introduction to the representative sample preparation strategies to isolate target pathogenic bacteria from food sample. We further describe the nucleic acid-based detection methods, such as PCR, real-time PCR, NASBA, RCA, LCR, and LAMP. Nucleic acid-based methods are by far the most sensitive and effective for the detection of a low number of target pathogens whose performance is greatly improved by combining with the sample preparation methods.

Inactivation of Foodborne Pathogens by Lactic Acid Bacteria

  • Daliri, Frank;Aboagye, Agnes Achiaa;Daliri, Eric Banan-Mwine
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.419-429
    • /
    • 2020
  • The problems caused by foodborne pathogens are not only a concern to the food industry but also with regard to global public health. Over the years, fermentation technology has proved to be one of the cheapest and safest methods for inactivating and controlling pathogenic microorganisms in food. Scientific evidence shows that lactic acid bacteria fermentation exerts significant antimicrobial effect against pathogenic bacteria and viruses. Lactic acid bacteria metabolites such as organic acids, bacteriocins and hydrogen peroxides have adverse effects on foodborne pathogens which lead to their inhibition. These compounds do not only cause physical injuries, but also have significant effects on the pathogens' gene expression. Furthermore, the presence of lactic acid bacteria in food provides nutritional competition among foodborne pathogens, and all these factors together suppress their growth. This study reviews our current knowledge of the antimicrobial abilities of lactic acid bacteria, their molecular mechanisms, and their application for inactivating foodborne pathogens.

Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lamk on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria

  • Rattanata, Narintorn;Klaynongsruang, Sompong;Daduang, Sakda;Tavichakorntrakool, Ratree;Limpaiboon, Temduang;Lekphrom, Ratsami;Boonsiri, Patcharee;Daduang, Jureerut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1341-1345
    • /
    • 2016
  • Gallic acid was isolated from Caesalpinia mimosoides Lamk and the structure s identified based on spectroscopic analysis and comparison with authentic compound. In this study we compared the ability of natural gallic acid (nGA) and commercial gallic acid (cGA) to inhibit the proliferation of cholangiocarcinoma cell lines (M213, M214) and foodborne pathogenic bacteria (Salmonella spp. and Plesiomonas shigelloides). Both nGA and cGA had the same inhibitory effects on cell proliferation by inducing apoptosis of cholangiocarcinoma cell lines. In addition, nGA inhibited growth of foodborne pathogenic bacteria in the same manner as cGA. Our results suggest that nGA from Caesalpinia mimosoides Lamk is a potential anticancer and antibacterial compound. However, in vivo studies are needed to elucidate the specific mechanisms involved.

Bactericidal Effects of CaO (Scallop-Shell Powder) on Foodborne Pathogenic Bacteria

  • Bae Dong-Ho;Yeon Ji-Hye;Park Shin-Young;Lee Dong-Ha;Ha Sang-Do
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.298-301
    • /
    • 2006
  • This study was investigated the bactericidal effects of calcium oxide (CaO) on three common foodborne pathogenic bacteria: Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium. Each bacteria level was determined in a CaO solution (0.01, 0.03, 0.05, 0.10, 0.15, and $0.20\%$ [w/v]) exposed for either 15 sec, 30 sec, 1 min, 2 min, 3 min, 5 min, 10 min, or 30 min. All three bacteria were not greatly affected by CaO solutions at concentrations of 0.01 and $0.03\%$, however, the decline of E. coli $(99\%;\;2.78\;log_{10}CFU/mL)$, L. monocytogens $(45\%;\;1.44\;log_{10}CFU/mL)$, and S. typhimurium $(70\%;\;2.08\;log_{10}CFU/mL)$ was greatest when they were exposed to $0.05\%$ CaO solution for 10 min. Moreover, the bactericidal action of CaO was maintained for at least 24 h of storage. The results of this study provide evidence that CaO, as a substitute for synthetic chemical substances has potential for use in the disinfection and sanitization of foods and food processing equipment.