Browse > Article
http://dx.doi.org/10.13103/JFHS.2020.35.5.419

Inactivation of Foodborne Pathogens by Lactic Acid Bacteria  

Daliri, Frank (Department of Plant Health (Virology), Council for Scientific and Industrial Research-Crops Research Institute)
Aboagye, Agnes Achiaa (Biotechnology Division, Council for Scientific and Industrial Research-Crops Research Institute)
Daliri, Eric Banan-Mwine (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Journal of Food Hygiene and Safety / v.35, no.5, 2020 , pp. 419-429 More about this Journal
Abstract
The problems caused by foodborne pathogens are not only a concern to the food industry but also with regard to global public health. Over the years, fermentation technology has proved to be one of the cheapest and safest methods for inactivating and controlling pathogenic microorganisms in food. Scientific evidence shows that lactic acid bacteria fermentation exerts significant antimicrobial effect against pathogenic bacteria and viruses. Lactic acid bacteria metabolites such as organic acids, bacteriocins and hydrogen peroxides have adverse effects on foodborne pathogens which lead to their inhibition. These compounds do not only cause physical injuries, but also have significant effects on the pathogens' gene expression. Furthermore, the presence of lactic acid bacteria in food provides nutritional competition among foodborne pathogens, and all these factors together suppress their growth. This study reviews our current knowledge of the antimicrobial abilities of lactic acid bacteria, their molecular mechanisms, and their application for inactivating foodborne pathogens.
Keywords
Fermentation technology; Metabolites; Antimicrobial compounds; Food safety;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kechaou, N., Chain, F., Gratadoux, J.J., Blugeon, S., Bertho, N., Chevalier, C., Le Goffic, R., Courau, S., Molimard, P., Chatel, J.M., Langella, P., Bermudez-Humaran, L.G., Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl. Environ. Microbiol., 79, 1491-1499 (2013).   DOI
2 Jay, J.M., Do background microorganisms play a role in the safety of fresh foods? Trends Food Sci. Technol., 8, 421-424 (1997).   DOI
3 Olaoye, O.A., Onilude, A.A., Investigation on the potential application of biological agents in the extension of shelf life of fresh beef in Nigeria. World J. Microbiol. Biotechnol., 26, 1445-1454 (2010).   DOI
4 Senne, M., Gilliland, S., Antagonistic action of cells of Lactobacillus delbrueckii subsp. lactis against pathogenic and spoilage microorganisms in fresh meat systems. J. Food Prot., 66, 418-425 (2003).   DOI
5 Ni, P., Huang, J., Ji, W., Qi, K., Fu, R., Isolation, identification of a Lactococcus lactis strain exhibiting broadspectrum antibacterial activity and its effects on preservation of chilled pork. Food Ferment. Ind., 39, 53-57 (2013).
6 Maragkoudakis, P.A., Mountzouris, K.C., Psyrras, D., Cremonese, S., Fischer, J., Cantor, M.D., Tsakalidou, E., Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int. J. Food Microbiol., 130, 219-226 (2009).   DOI
7 Shanker, E., Federle, M.J., Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes, 8, 15 (2017).   DOI
8 Ennahar, S., Deschamps, N., Anti-Listeria effect of enterocin A, produced by cheese-isolated Enterococcus faecium EFM01, relative to other bacteriocins from lactic acid bacteria. J. Appl. Microbiol. 88, 449-457 (2000).   DOI
9 Gao, Z., Daliri, E.B.M., Wang, J., Liu, D., Chen, S., Ye, X., Ding, T., Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J. Food Prot., 82, 441-453 (2019).   DOI
10 Sidooski, T., Brandelli, A., Bertoli, S.L., Souza, C.K.D., Carvalho, L.F.D., Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria-A review. Crit. Rev. Food Sci. 59, 2839-2849 (2019).   DOI
11 Palmai, M., Kisko, G., Studies on the growth of Listeria monocytogenes and Lactobacillus casei in mixed cultures. Acta Aliment., 32, 103-111 (2003).   DOI
12 Siedler, S., Balti, R., Neves, A.R., Bioprotective mechanisms of lactic acid bacteria against fungal spoilage of food. Curr. Opin. Biotechnol. 56, 138-146 (2019).   DOI
13 Liao, X., Ma, Y., Daliri, E.B.M., Koseki, S., Wei, S., Liu, D., Ye, X., Chen, S., Ding, T., Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends Food Sci. Technol., 95, 97-106 (2020).   DOI
14 Miranda, R.O., Campos-Galvao, M.E.M., Nero, L.A., Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis. Food Res. Int., 105, 897-904 (2018).   DOI
15 Breukink, E., de Kruijff, B., Lipid II as a target for antibiotics. Nat. Rev. Drug Discov., 5, 321-323 (2006).   DOI
16 Altuntas, E.G., Ayhan, K., Peker, S., Ayhan, B., Demiralp, D.O., Purification and mass spectrometry based characterization of a pediocin produced by Pediococcus acidilactici 13. Mol. Biol. Rep., 41, 6879-6885 (2014).   DOI
17 Slima, S.B., Ktari, N., Trabelsi, I., Triki, M., Feki-Tounsi, M., Moussa, H., Makni, I., Herrero, A., Jiménez-Colmenero, F., Perez, C.R.C., Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico-chemical, texture and microbiological properties of beef sausages. LWT-Food Sci Technol., 86, 219-226 (2017).   DOI
18 Cavicchioli, V.Q., Camargo, A.C., Todorov, S.D., Nero, L.A., Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with antilisterial activity isolated from Brazilian artisanal cheese. J. Dairy Sci., 100, 2526-2535 (2017).   DOI
19 Tharrington, G., Sorrells, K.M., Inhibition of Listeria monocytogenes by milk culture filtrates from Lactobacillus delbrueckii subsp. lactis. J. Food Prot., 55, 542-544 (1992).   DOI
20 Cavicchioli, V.Q., dos Santos Dornellas, W., Perin, L.M., Pieri, F.A., de Melo Franco, B.D.G., Todorov, S.D., Nero, L.A., Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk. Appl. Biochem. Biotechnol., 175, 2806-2822 (2015).   DOI
21 Saraiva, C., Garcia-Diez, J., Fontes, M., Esteves, A., Modeling the behavior of Listeria monocytogenes. In: Meat, Listeria monocytogenes, Monde Alfred Nyila, IntechOpen (2018). DOI: 10.5772/intechopen.79967
22 Melo, T.A., dos Santos, T.F., de Almeida, M.E., Junior, L.A.G.F., Andrade, E.F., Rezende, R.P., Marques, L.M., Romano, C.C., Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa. BMC Microbiol. 16, 250 (2016).   DOI
23 Adetoye, A., Pinloche, E., Adeniyi, B.A., Ayeni, F.A., Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 18, 96 (2018).   DOI
24 Alakomi, H.L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., Helander, I., Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66, 2001-2005 (2000).   DOI
25 Miladi, H., Bakhrouf, A., Ammar, E., Cellular lipid fatty acid profiles of reference and food isolates Listeria monocytogenes as a response to refrigeration and freezing stress. J. Food Biochem., 37, 136-143 (2013).   DOI
26 Supa-Amornkul, S., Chantratita, W., Srichunrusami, C., Janchompoo, P., Chaturongakul, S., Listeria monocytogenes MerR-like regulator NmlRlm: Its transcriptome and role in stress response. Foodborne Pathog. Dis., 13, 369-378 (2016).   DOI
27 Bayles, D., Wilkinson, B., Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett. Appl. Microbiol., 30, 23-27 (2000).   DOI
28 Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O.P., Bierbaum, G., de Kruijff, B., Sahl, H.G., Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem., 276, 1772-1779 (2001).   DOI
29 Du, J., Xu, M., Li, B., Ding, X., Huo, G., Preliminary screening of lactic acid bacteria against Escherichia coli and the research of probiotic potential for the screening bacteria. Sci. Technol. Food Ind., 37, 152-156 (2016).
30 Ren, H., Saliu, E.M., Zentek, J., Goodarzi Boroojeni, F., Vahjen, W., Screening of host specific lactic acid bacteria active against Escherichia coli from massive sample pools with a combination of in vitro and ex vivo methods. Front. Microbiol., 10: 2705. (2019).   DOI
31 Kao, C.T., Frazier, W., Effect of lactic acid bacteria on growth of Staphylococcus aureus. Appl. Microbiol., 14, 251-255 (1966).   DOI
32 Scatassa, M.L., Gaglio, R., Cardamone, C., Macaluso, G., Arcuri, L., Todaro, M., Mancuso, I., Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses. Ital. J. Food Saf., 6, 6191 (2017).
33 Ercoli, L., Gallina, S., Nia, Y., Auvray, F., Primavilla, S., Guidi, F., Pierucci, B., Graziotti, C., Decastelli, L., Scuota, S., Investigation of a staphylococcal food poisoning outbreak from a Chantilly cream dessert, in Umbria (Italy). Foodborne Pathog. Dis. 14, 407-413 (2017).   DOI
34 Di Domenico, M., Curini, V., Di Lollo, V., Massimini, M., Di Gialleonardo, L., Franco, A., Caprioli, A., Battisti, A., Camma, C., Genetic diversity of Coxiella burnetii in domestic ruminants in central Italy. BMC Vet. Res., 14, 1-7 (2018).   DOI
35 Haines, W.C., Harmon, L., Effect of selected lactic acid bacteria on growth of Staphylococcus aureus and production of enterotoxin. Appl. Microbiol., 25, 436-441 (1973).   DOI
36 Pena, R.T., Blasco, L., Ambroa, A., Gonzalez-Pedrajo, B., Fernandez-Garcia, L., Lopez, M., Bleriot, I., Bou, G., Garcia-Contreras, R., Wood, T.K., Tomas, M., Relationship between quorum sensing and secretion systems. Front. Microbiol., 10, 1100 (2019).   DOI
37 Yan, S., Wu, G., Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa?. Front. Microbiol., 10, 1582 (2019).   DOI
38 Hor, Y.Y., Liong, M.T., Use of extracellular extracts of lactic acid bacteria and bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus. Dermatol. Sin., 32, 141-147 (2014).   DOI
39 Orihuel, A., Terán, L., Renaut, J., Vignolo, G.M., De Almeida, A.M., Saavedra, M.L., Fadda, S., Differential proteomic analysis of lactic acid bacteria-Escherichia coli O157:H7 Interaction and its contribution to bioprotection strategies in meat. Front. Microbiol., 9, 1083-1083 (2018).   DOI
40 Wang, F., Zhang, J.L., Ning, X.B., Antibacterial effect of compound Lactobacillus on E. coli O157: H7. Sci. Technol. Food Ind., 21, 34:83-86 (2013).   DOI
41 Orihuel, A., Terán, L., Renaut, J., Planchon, S., Valacco, M.P., Masias, E., Minahk, C., Vignolo, G., Moreno, S., De Almeida, A.M., Saavedra, L., Fadda, S., Physiological and proteomic response of Escherichia coli O157:H7 to a bioprotective lactic acid bacterium in a meat environment. Food Res. Int. (Ottawa, Ont.), 125, 108622 (2019).   DOI
42 Martin, V., Maldonado, A., Fernandez, L., Rodriguez, J.M., Connor, R.I., Inhibition of human immunodeficiency virus type 1 by lactic acid bacteria from human breastmilk. Breastfeed Med., 5, 153-158 (2010).   DOI
43 Wachsman, M.B., Castilla, V., de Ruiz Holgado, A.P., de Torres, R.A., Sesma, F., Coto, C.E., Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antivir. Res., 58, 17-24 (2003).   DOI
44 Aboubakr, H.A., El-Banna, A.A., Youssef, M.M., Al-Sohaimy, S.A.A., Goyal, S.M., Antiviral effects of Lactococcus lactis on Feline Calicivirus, A Human Norovirus Surrogate. Food Environ. Virol., 6, 282-289 (2014).   DOI
45 Schaack, M.M., Marth, E.H., Behavior of Listeria monocytogenes in skim milk and in yogurt mix during fermentation by thermophilic lactic acid bacteria. J. Food Prot., 51, 607-614 (1988).   DOI
46 Guessas, B., Hadadji, M., Saidi, N., Kihal, M., Inhibition of Staphylococcus aureus growth by lactic acid bacteria in milk. Dirasat Agric. Sci., 32, 304-313 (2005).
47 Bhola, J., Bhadekar, R., In vitro synergistic activity of lactic acid bacteria against multi-drug resistant staphylococci. BMC Complement Altern. Med., 19, 70 (2019).   DOI
48 Vesterlund, S., Karp, M., Salminen, S., Ouwehand, A.C., Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology, 152, 1819-1826 (2006).   DOI
49 Zhang, P., Gu, G., Zhang, J., Chen, J., Inhibition of Listeria monocytogenes growth by using combined bacteriocin producing strains in raw beef. Sci. Technol. Food Ind., 32, 118-110 (2011).
50 Zhu, C., Gao, Y., Guo-Dong, X., Screening of lactic acid bacteria for production of anti-Listeria bacteriocin. Modern Food Sci. Technol., 30, 86-91 (2014).
51 Yang, Y., Latorre, J., Khatri, B., Kwon, Y., Kong, B., Teague, K., Graham, L., Wolfenden, A., Mahaffey, B., Baxter, M., Characterization and evaluation of lactic acid bacteria candidates for intestinal epithelial permeability and Salmonella Typhimurium colonization in neonatal turkey poults. Poult. Sci., 97, 515-521 (2018).   DOI
52 Rokana, N., Mallappa, R.H., Batish, V.K., Grover, S., Interaction between putative probiotic Lactobacillus strains of Indian gut origin and Salmonella: impact on intestinal barrier function. LWT-Food Sci Technol., 84, 851-860(2017)   DOI
53 De Keersmaecker, S.C., Verhoeven, T.L., Desair, J., Marchal, K., Vanderleyden, J., Nagy, I., Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella Typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett., 259, 89-96 (2006).   DOI
54 Zhang, H., Qian, G., Bin, L., Nursing, D., Study of Lactobacillus strains with antagonistic activity against Salmonella. Food Res. Dev., 37, 171-174 (2016).
55 Brashears, M.M., Reilly, S.S., Gilliland, S.E., Antagonistic action of cells of Lactobacillus lactis toward Escherichia coli O157:H7 on refrigerated raw chicken meat. J. Food Prot., 61, 166-170 (1998).   DOI
56 Tshabalala, P., de Kock, H., Buys, E., Survival of Escherichia coli O157: H7 co-cultured with different levels of Pseudomonas fluorescens and Lactobacillus plantarum on fresh beef. Braz. J. Microbiol., 43, 1406-1413 (2012).   DOI
57 Kawashima, T., Hayashi, K., Kosaka, A., Kawashima, M., Igarashi, T., Tsutsui, H., Tsuji, N.M., Nishimura, I., Hayashi, T., Obata, A., Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int. Immunopharmacol., 11, 2017-2024 (2011).   DOI
58 Sharma, C., Singh, B.P., Thakur, N., Gulati, S., Gupta, S., Mishra, S.K., Panwar, H., Antibacterial effects of Lactobacillus isolates of curd and human milk origin against foodborne and human pathogens. 3 Biotech., 7, 31 (2017).
59 Diepers, A.C., Krömker, V., Zinke, C., Wente, N., Pan, L., Paulsen, K., Paduch, J.H., In vitro ability of lactic acid bacteria to inhibit mastitis-causing pathogens. Sustain Chem. Pharm., 5, 84-92 (2017).   DOI
60 Yu, Y., Zhang, Y., Liu, R., Zeng, D., Huang, W., Jiang, H., Studies on the antagonistic property of Lactobacillus. Southwest China Journal of Agric. Sci., 19, 294-296 (2006).   DOI
61 Karmali, M.A., Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev., 2, 15-38 (1989).   DOI
62 Zhang, Y., Zhang, L., Du, M., Yi, H., Guo, C., Tuo, Y., Han, X., Li, J., Zhang, L., Yang, L., Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiol. Res., 167, 27-31 (2011).   DOI
63 Petrova, M.I., Imholz, N.C., Verhoeven, T.L., Balzarini, J., Van Damme, E.J., Schols, D., Vanderleyden, J., Lebeer, S., Lectin-like molecules of Lactobacillus rhamnosus GG inhibit pathogenic Escherichia coli and Salmonella biofilm formation. PloS one 11, e0161337 (2016).   DOI
64 Amrutha, B., Sundar, K., Shetty, P.H., Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microb. Pathog., 111, 156-162 (2017).   DOI
65 El Hussein, A.A., Mohy-Eldin, H.S., Elmadiena, M.M.N., El Siddig, M.A., Prevalence, detection and antimicrobial resistance pattern of salmonella in Sudan, Salmonella In: Distribution, adaptation, control measures and molecular technologies, Bassam A. Annous and Joshua B. Gurtler, IntechOpen, (2012). DOI: 10.5772/29928.
66 Coban, H.B., Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst. Eng., 43, 569-591 (2020).   DOI
67 Wells, J., Davis, B., Wachsmuth, I., Riley, L., Remis, R., Sokolow, R., Morris, G., Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J. Clin. Microbiol., 18, 512-520 (1983).   DOI
68 Zhao, T., Doyle, M.P., Shere, J., Garber, L., Prevalence of enterohemorrhagic Escherichia coli O157: H7 in a survey of dairy herds. Appl. Environ. Microbiol., 61, 1290-1293 (1995).   DOI
69 Boyce, T.G., Swerdlow, D.L., Griffin, P.M., Escherichia coli O157: H7 and the hemolytic-uremic syndrome. N. Engl. J. Med., 333, 364-368 (1995).   DOI
70 Sirichokchatchawan, W., Temeeyasen, G., Nilubol, D., Prapasarakul, N., Protective effects of cell-free supernatant and live lactic acid bacteria isolated from thai pigs against a pandemic strain of Porcine Epidemic Diarrhea Virus. Probiotics Antimicro., 10, 383-390 (2018).   DOI
71 Biliavska, L., Pankivska, Y., Povnitsa, O., Zagorodnya, S., Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5. Medicina (Kaunas, Lithuania), 55, 519 (2019).   DOI
72 Takeda, S., Takeshita, M., Kikuchi, Y., Dashnyam, B., Kawahara, S., Yoshida, H., Watanabe, W., Muguruma, M., Kurokawa, M., Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int. Immunopharmacol., 11, 1976-1983 (2011).   DOI
73 Gomez, N.C., Ramiro, J.M.P., Quecan, B.X.V., de Melo Franco, B.D.G., Use of potential probiotic lactic acid bacteria biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation. Front. Microbiol., 7, 863 (2016).
74 Oh, J.H., Park, M.K., Recent trends in Salmonella outbreaks and emerging technology for biocontrol of Salmonella using phages in foods: a review. J. Microbiol. Biotechnol., 27, 2075-2088 (2017).   DOI
75 Wachsmuth, I., Sparling, P., Barrett, T., Potter, M., Enterohemorrhagic Escherichia coli in the United States. FEMS Immunol. Med. Microbiol. 18, 233-239 (1997).   DOI
76 Gould, L.H., Walsh, K.A., Vieira, A.R., Herman, K., Williams, I.T., Hall, A.J., Cole, D., Surveillance for foodborne disease outbreaks-United States, 1998-2008. Morbidity and Mortality Weekly Report: Surveillance Summaries 62, 1-34 (2013).
77 Iijima, Y., Tanaka, S., Ohishi, H., Multiple outbreaks of gastroenteritis due to a single strain of genotype GII/4 norovirus in Kobe, Japan, 2006: risk factors for norovirus spread in health care settings. Jpn. J. Infect. Dis., 61, 419-422 (2008).
78 Frank, C., Werber, D., Cramer, J.P., Askar, M., Faber, M., Heiden, M., Bernard, H., Fruth, A., Prager, R., Spode, A., Epidemic profile of Shiga-toxin-producing Escherichia coli O104: H4 outbreak in Germany. N. Engl. J. Med., 365, 1771-1780 (2011).   DOI
79 Wang, P., Song, X., Characteristics of food poisoning in mainland China, 2006-2015. Pract. Prev. Med., 25, 257-260 (2018).
80 Liu, L., Wang, J., Levin, M.J., Sinnott-Armstrong, N., Zhao, H., Zhao, Y., Shao, J., Di, N., Zhang, T.E., The origins of specialized pottery and diverse alcohol fermentation techniques in Early Neolithic China. PNAS, 116, 12767-12774 (2019).   DOI
81 Liu, L., Li, Y., Hou, J., Making beer with malted cereals and qu starter in the Neolithic Yangshao culture, China. J. Archaeol. Sci. Rep., 29, 102134 (2020).
82 Hati, S., Patel, N., Sakure, A., Mandal, S., Influence of whey protein concentrate on the production of antibacterial peptides derived from fermented milk by lactic acid bacteria. Int. J. Pept. Res. Ther., 24, 87-98 (2018).   DOI
83 Mulaw, G., Muleta, D., Tesfaye, A., Sisay, T., Protective effect of potential probiotic strains from fermented Ethiopian food against Salmonella Typhimurium DT104 in Mice. Int. J. Microbiol., 2020, 7523629 (2020).
84 Kim, M.S., Yoon, Y.S., Seo, J.G., Lee, H.G., Chung, M.J., Yum, D.Y., A study on the prevention of salmonella infection by using the aggregation characteristics of lactic acid bacteria. Toxicol. Res. 29, 129-135 (2013).   DOI
85 Pelyuntha, W., Chaiyasut, C., Kantachote, D., Sirilun, S., Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer- 2 and biofilm interference. Peer J., 7, e7555 (2019).   DOI
86 Varela, C., Sundstrom, J., Cuijvers, K., Jiranek, V., Borneman, A., Discovering the indigenous microbial communities associated with the natural fermentation of sap from the cider gum Eucalyptus gunnii. Scientific. rep., 10, 1-13 (2020).   DOI
87 Daliri, E.B.M., Ofosu, F.K., Chelliah, R., Kim, J.H., Kim, J.R., Yoo, D., Oh, D.H., Untargeted metabolomics of fermented rice using UHPLC Q-TOF MS/MS reveals an abundance of potential antihypertensive compounds. Foods, 9, 1007 (2020).   DOI
88 Ammouri, K., Rekik, S., 2019. Isolement et purification de bacteries lactiques productrices de bacteriocines a partir de produits laitiers. Universite Mouloud Mammeri de Tizi-Ouzou. Tizi Ouzou, Algerie, pp. 2-11.
89 Lorusso, A., Calistri, P., Petrini, A., Savini, G., Decaro, N., Novel coronavirus (SARS-CoV-2) epidemic: a veterinary perspective. Vet. Ital., 56, 5-10 (2020).
90 Linnan, M.J., Mascola, L., Lou, X.D., Goulet, V., May, S., Salminen, C., Hird, D.W., Yonekura, M.L., Hayes, P., Weaver, R., Epidemic listeriosis associated with Mexicanstyle cheese. N. Engl. J. Med., 319, 823-828 (1988).   DOI
91 Cuesta, V.M., 2018. Optimització de la produccio de bacteriocines amb activitat antimicrobiana en cultius de Pantoea spp. Universitat Autonoma de Barcelona. Barcelona, Spain, pp. 5-11.
92 Chung, H.J., Yousef, A.E., Screening of Lactobacilli derived from fermented foods and partial characterization of Lactobacillus casei OSY-LB6A for its antibacterial activity against foodborne pathogens. J. Food Sci. Nutr., 14, 162-167 (2009).