• Title/Summary/Keyword: Folded Hyper-Star

Search Result 9, Processing Time 0.019 seconds

Hierarchical Folded Hyper-Star Network(HFH): A New Interconnection Network Based on Folded Hyper-Star Network (계층적 Folded 하이퍼-스타 연결망(HFH): Folded 하이퍼-스타 연결망을 기반으로 하는 새로운 상호연결망)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.95-100
    • /
    • 2008
  • In this paper, we propose a new interconnection network topology, hierarchical folded hyper-star network HFH($C_n,\;C_n$), which is based on folded hyper-star network. Our results show that the proposed hierarchical folded hyper-star network performs very competitively in comparison to folded hyper-star network and hierarchical network HCN(m,m), HFN(m,m) have been previously proposed, when diameter ${\times}$ degree is used as a network cost measure. We also investigate various topological properties of HFH($C_n,\;C_n$) including connectivity, routing algorithm, diameter, broadcasting.

Analysis of Topological Properties and Embedding for Folded Hyper-Star Network (폴디드 하이퍼스타 네트워크의 성질과 임베딩 분석)

  • Kim, Jong-Seok;Cho, Chung-Ho;Lee, Hyeong-Ok
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1227-1237
    • /
    • 2008
  • In this paper, we analyze topological properties and embedding of Folded Hyper-Star network to further improve the network cost of Hypercube, a major interconnection network. Folded Hyper-Star network has a recursive expansion and maximal fault tolerance. The result of embedding is that Folded Hypercube $FQ_n$ and $n{\times}n$ Torus can be embedded into Folded Hyper-Star FHS(2n,n) with dilation 2. Also, we show Folded Hyper-Star FHS(2n,n) can be embedded into Folded Hypercube $FQ_{2n-1}$ with dilation 1.

  • PDF

Analysis of Topological Properties for Folded Hyper-Star FHS(2n,n) (Folded 하이퍼-스타 FHS(2n,n)의 위상적 성질 분석)

  • Kim, Jong-Seok
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.263-268
    • /
    • 2007
  • In this paper, we analyze some topological properties of Folded Hyper-Star FHS(2n,n). First, we prove that FHS(2n,n) has maximal fault tolerance, and broadcasting time using double rooted spanning tree is 2n-1. Also we show that FHS(2n,n) can be embedded into Folded hypercube with dilation 1, and Folded hypercube can be embedded into FHS(2n,n) ith dilation 2 and congestion 1.

Parallel Paths in Folded Hyper-Star Graph (Folded 하이퍼-스타 그래프의 병렬 경로)

  • Lee, Hyeong-Ok;Choi, Jung;Park, Seung-Bae;Cho, Chung-Ho;Lim, Hyeong-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1756-1769
    • /
    • 1999
  • Parallel paths in an interconnection network have some significance in that message transmission time can be reduced because message is divided into packets and transmitted in parallel through several paths, and also an whose nodes has 2n binary bit string, is an interconnection network which has a lower network cost than hypercube and its variation. In this paper, we analyze node disjoint parallel path in Folded Hyper-Star graph FHS(2n,n) proposed as the topology of parallel computers and, using the result, prove that the fault diameter of a Folded Hyper-Star graph FHS(2n,n) is 2n-1.

  • PDF

Fault Diameter of Folded Hyper-Star Interconnection Networks FHS(2n,n) (상호연결망 폴디드 하이퍼-스타 연결망 FHS(2n,n)의 고장 지름)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The fault diameter is one of the important measures for transmission rate and reliability of interconnection network. H.-O. Lee et al.[Parallel paths in folded hyper-star graph, Journal of KIPS, Vol.6, No.7, pp.1756-1769, 1999] suggested the node-disjoint paths of FHS (2n,n), and proved that the fault diameter of FHS(2n,n) is less than 2n-1. In this paper, we suggest an advanced node-disjoint paths of FHS(2n,n). We also prove that the wide diameter of FHS(2n,n) is dist(U,V)+4, and the fault diameter of FHS(2n,n) is less than n+2.

Symmetry and Embedding Algorithm of Interconnection Networks Folded Hyper-Star FHS(2n,n) (상호연결망 폴디드 하이퍼-스타 FHS(2n,n)의 대칭성과 임베딩 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.501-508
    • /
    • 2009
  • In this paper, we prove that folded hyper-star network FHS(2n,n) is node-symmetric and a bipartite network. We show that FHS(2n,n) can be embedded into odd network On+1 with dilation 2, congestion 1 and Od can be embedded into FHS(2n,n) with dilation 2 and congestion 1. Also, we show that $2n{\time}n$ torus can be embedded into FHS(2n,n) with dilation 2 and congestion 2.

Embedding Algorithms of Hierarchical Folded HyperStar Network (계층적 폴디드 하이퍼스타 네트워크의 임베딩 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Hierarchical Folded HyperStar Network has lower network cost than HCN(n,n) and HFN(n,n) which are hierarchical networks with the same number of nodes. In this paper, we analyze embedding between Hierarchical Folded HyperStar HFH($C_n,C_n$) and Hypercube, HCN(n,n), HFN(n,n). The results of embedding are that HCN(n,n), HFN(n,n) and Hypercube $Q_{2n}$ can be embedded into HFH($C_n,C_n$) with expansion $\frac{C^n}{2^{2n}}$ and dilation 2, 3, and 4, respectively. Also, HFH($C_n,C_n$) can be embedded into HFN(2n,2n) with dilation 1. These results mean so many developed algorithms in Hypercube, HCN(n,n), HFN(n,n) can be used efficiently in HFH($C_n,C_n$).

Hyper-Star Graphs: A New Interconnection Network for Multicomputer (하이퍼-스타 그래프 : 다중 컴퓨터를 위한 새로운 상호 연결망)

  • Lee, Hyeong-Ok;Kim, Byeong-Cheol;Im, Hyeong-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3099-3108
    • /
    • 1998
  • 본 논문에서는 새로운 다중 컴퓨터의 위상으로 하이퍼-스타 그래프를 제안하고, 하이퍼-스타 그래프에 대하여 주요 망 척도인 분지수, 연결도, 확장성, 라우팅, 지름, 임베딩 등의 특징을 분석한다. 하이퍼-스타 그래프 HS(2n,n)에 에지를 한 개 추가한 folded 하이퍼-스타 그래프 FHS(2n,n)은 2nCn개의 노드를 갖고 널리 알려진 상호 연결망인 하이퍼큐브에 비해 상대적으로 분지수와 지름이 작은 값을 갖는 연결망이다. Folded 하이퍼-스타 그래프 FHS(2n,n)가 하이퍼큐브 Qn이 같은 노드 수를 가질 때 분지수$\times$지름에 대한 척도에 있어서 은 n2/2보다 작고, 하이퍼큐브 Qn와 그의 변형들보다 연결망의 망 비용에 있어서 우수함을 의미한다. 또한 하이퍼큐브 Qn과 n$\times$n 토러스를 하이퍼-스타 그래프 HS(2n,n)에 연장비율 2에 임베딩하는 방법을 보인다.

  • PDF

Expansion and Connection analysis of FoldedHyperStar FHs(2n,n) Graph (폴디드 하이퍼스타 FHS(2n,n)그래프의 확장성과 연결도 분석)

  • Sim, Hyun;Lee, Kyu-Su;Ki, Woo-Seo;Lee, Hyeong-Ok;Oh, Jae-Cheol
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.357-358
    • /
    • 2008
  • 폴디드 하이퍼스타 FHS(2n,n)은 하이퍼큐브와 그의 변형된 그래프보다 망 비용이 개선된 상호연결망이다. 본 논문에서는 폴디드 하이퍼스타 FHS(n-1,k-1)와 FHS(n-1,k) 그래프를 연결하여 폴디드 하이퍼스타 FHS(n,k)를 생성하는 방법을 제시하였다(단, n=2k). 또한, 정규 연결망 형태인 폴디드 하이퍼스타 FHS(2n,n)의 노드연결도는 n+1이고, 최대고장허용도를 가짐을 보인다.

  • PDF