• 제목/요약/키워드: Focusing Vibration

검색결과 152건 처리시간 0.027초

광 픽업 지지부 초기설계를 위한 외팔보 구조 진동해석 (Vibration analysis of a cantilever beam for initial design of optical pickups)

  • 김윤영;이호철
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.763-770
    • /
    • 1996
  • This paper proposes a method to determine the initial shape and size of the suspension beam of an optical pickup actuator subjected to specified dynamic characteristics. For the analysis, a simplified model consisting of a concentrated mass, rotational springs and beams is developed. Based on this model, the key dimensionless design parameters are introduced, which govern low-frequency vibration characteristics i. e., the resonant frequencies in the tracking and focusing directions. A systematic procedure for sizing and shaping the actuator suspension beams is described and applied to a sample case. The effectiveness of the present technique is verified through the comparison of the present and the finite element results.

  • PDF

The Hedonic Effects of Smartphone Vibrations in Mobile Gaming for Male Users

  • Choe, Pilsung;Liao, Chen;Schumacher, Dennis
    • 대한인간공학회지
    • /
    • 제32권4호
    • /
    • pp.363-370
    • /
    • 2013
  • Objective: This study investigates the influences of vibrations on hedonic satisfaction based on four kinds of perceptions (perceived ease of use, perceived usefulness, perceived enjoyment, cognitive concentration) when mobile gaming. Background: As mobile gaming is becoming more and more popular for smartphone users, they might want to have more hedonic satisfaction instead of focusing on traditional usability criteria such as efficiency, effectiveness, and satisfaction. Method: We conducted a human-factors experiment with 35 male subjects to evaluate hedonic satisfaction in the mobile game configured by 7 vibration types having different levels of intensity and length. Results: The results revealed that the use of vibration significantly increases the perceived ease of use, perceived usefulness, and cognitive concentration. In addition, the intensity of vibration makes differences of perceived usefulness and cognitive concentration. Conclusion: Vibration can be effectively used to improve hedonic satisfaction of smartphone users in mobile gaming when they are not allowed to turn the sound effects on. Application: This study helps game designers effectively provide vibration feedback of mobile games for smartphone users.

고속 4행정 디젤엔진을 갖는 선박 추진시스템에서 토크변동에 의한 감속기어 안정성 평가 (Reduction Gear Stability Estimation due to Torque Variation on the Marine Propulsion System with High-speed Four Stroke Diesel Engine)

  • 김인섭;윤현우;김준성;버광다오;이돈출
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.815-821
    • /
    • 2015
  • Maritime safety has been more critical recently due to the occurrence of shipboard accidents involving prime movers. As such, the propulsion shafting design and construction plays a vital role in the safe operation of the vessel other than focusing on being cost-efficient. Smaller vessels propulsion shafting system normally install high speed four-stroke diesel engine with reduction gear for propulsion efficiency. Due to higher cylinder combustion pressures, flexible couplings are employed to reduce the increased vibratory torque. In this paper, an actual vibration measurement and theoretical analysis was carried out on a propulsion shafting with V18.3L engine installed on small car-ferry and revealed higher torsional vibration. Hence, a rubber-block type flexible coupling was installed to attenuate the transmitted vibratory torque. Considering the flexible coupling application factor, reduction gear stability due to torque variation was analyzed in accordance with IACS(International Association of Classification Societies) M56 and the results are presented herein.

The Noise Reduction of a DC Motor Using Multi-body Dynamics

  • Jung Il-Ho;Seo Jong-Hwi;Choi Sung-Jin;Park Tae-Won;Chai Jang-Bom
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.336-342
    • /
    • 2005
  • The DC motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, mostly focusing on the causes of noise and vibration and a means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of the DC motor and verified by the test results of the fan DC motor in the vehicle. This method may be applicable to various DC motors.

다물체 동역학을 이용한 DC 모터 소음 저감에 관한 연구 (The Noise Reduction of A DC Motor Using Multi-body Dynamics)

  • 정일호;박태원;박지연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.875-880
    • /
    • 2004
  • The DC Motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies that attempted to solve these problems, mostly focusing on the causes of noise and vibration and the means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of a DC motor and verified by the test results of a fan DC motor in a vehicle. This method may be applicable to various DC motors.

  • PDF

축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스 (Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

축대칭 원통 탄성 쉘의 진동음향 (Vibroacoustics of Axisymmetric Cylindrical Elastic Shells)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.160-165
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell can change natural frequencies and vibration magnitudes of the shell and a vibrating cylindrical shell can also change acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchchoff-Helmholtz Integral equation with Green function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

  • PDF

면역반응 알고리즘을 이용한 구조물의 진동제어 (A Vibration Control of the Strcture using Immune Response Algorithm)

  • 이영진;이권순
    • 한국항만학회지
    • /
    • 제13권2호
    • /
    • pp.389-398
    • /
    • 1999
  • In the biological immunity, the immune system of organisms regulates the antibody and T-cells to protect the attack from the foreign materials which are virus, germ cell, and other antigens, and supports their stable state. It has similar characteristics that has the adaptation and robustness to overcome disturbances and to control the plant of engineering application. In this paper, we build a model of the T-cell regulated immune response mechanism. We have also designed an immune response controller(IRC) focusing on the T-cell regulated immune response of the biological immune system that include both a help part to control the response and a suppress part to adjust system stabilization effect. We show some computer simulation to control the vibration of building structure system with strong wind forces excitation also demonstrate the efficiency of the proposed controller for applying a practical system even with existing nonlinear terms.

  • PDF

A comprehensive review on the modeling of smart piezoelectric nanostructures

  • Ebrahimi, Farzad;Hosseini, S.H.S.;Singhal, Abhinav
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.611-633
    • /
    • 2020
  • In this paper, a comprehensive review of nanostructures that exhibit piezoelectric behavior on all mechanical, buckling, vibrational, thermal and electrical properties is presented. It is firstly explained vast application of materials with their piezoelectric property and also introduction of other properties. Initially, more application of material which have piezoelectric property is introduced. Zinc oxide (ZnO), boron nitride (BN) and gallium nitride (GaN) respectively, are more application of piezoelectric materials. The nonlocal elasticity theory and piezoelectric constitutive relations are demonstrated to evaluate problems and analyses. Three different approaches consisting of atomistic modeling, continuum modeling and nano-scale continuum modeling in the investigation atomistic simulation of piezoelectric nanostructures are explained. Focusing on piezoelectric behavior, investigation of analyses is performed on fields of surface and small scale effects, buckling, vibration and wave propagation. Different investigations are available in literature focusing on the synthesis, applications and mechanical behaviors of piezoelectric nanostructures. In the study of vibration behavior, researches are studied on fields of linear and nonlinear, longitudinal and transverse, free and forced vibrations. This paper is intended to provide an introduction of the development of the piezoelectric nanostructures. The key issue is a very good understanding of mechanical and electrical behaviors and characteristics of piezoelectric structures to employ in electromechanical systems.

초소형 광디스크 드라이브용 조동구동기의 동특성 평가 및 2-와이어 미세 구동기의 개발 (Evaluation of Dynamic Characteristics of Coarse Actuator and Design of a 2-Wire Fine Actuator for Small Form Factor ODD)

  • 박세준;이강녕;이동주;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.351-351
    • /
    • 2004
  • For greeting the era of ubiquitous network, data storage devices have been essentially attached to mobile data devices. As a result, the minimization of the storage device has arisen as major interests in the next generation data storage technology. So, there are many researches for the small form factor ODD. In this paper, we propose a pick up that consists of a linear VCM and 2-wire focusing actuator for a small form factor ODD. For the sake of checking performance of the coarse actuator, PID controller is designed. Experiment with controller and DSP board shows its propriety as a fine tracking actuator. And, 2-wire suspension actuator is designed in order to be contained in a coarse actuator and to satisfy the thickness of a PCMCIA type. Through the experiment of designed actuator, It verifies performance as a focusing actuator.

  • PDF